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Abstract. We define a version of knot contact homology, and recall the definition of
string homology. We construct a chain map from the knot contact setting to the string
setting, and claim that it’s an isomorphism on homology. I was going to have a nice
example to carry through, but unfortunately it was harder to compute than I expected.

1. Knot contact homology: the idea

The general setup for Legendrian contact homology is as follows:

(1) Let L be a Legendrian submanifold of a contact manifold M . (This means the
tangent spaces of L lie inside the contact distribution.) A Reeb chord is a geodesic
segment of M that starts and ends on L. (More specifically, it’s a flow of the Reeb
vector field R; R(α) = 1, dR(α,−) = 0.)

(2) We can define a grading on the Reeb chords, specifically the Maslov index.
(3) The Algebra of chords is now a graded algebra. To create a homology theory we

need a chain map. This is defined by counting the number of holomorphic curves
which start at a given chordα , and end at a chain b of chords, where |a| − |b| = 1.
Now the chain map is

∂(a) =
∑

|a|−|b|=1

#{holomorphic curves from a to b}b.

As an example, we can readily define Legendrian contact homology for Legendrian knots.
That is, if a knot has tangent lines inside the standard contact distrubtion of R3, then we
obtain a Legendrian isotopy invariant of the Legendrian knot using the above framework.

In our case, we want to define a homology theory for all smooth knots, not just Legen-
drian ones. What do we do?

Definition 1.1. Let K ⊂ Q = R3 be a smooth knot. We write U∗Q to denote the unit
cotangent bundle of Q, that is, the S2-bundle over R3 consisting of unit covectors in the
cotangent bundle. U∗Q is naturally a contact manifold: any point in T ∗Q is of the form
(q, p) where q is the point and p ∈ T ∗qQ. The tautological form is the one-form λ = pidq

i

on T ∗Q. For a coordinate free description, we can write λ = p ◦ dπ, where π : T ∗Q→ Q
is the bundle projection. The restriction of λ to U∗Q is a contact form.

Let, we define ΛK to be the unit conormal bundle of K, that is, the bundle of unit-length
normal vectors to K. Then ΛK is a submanifold of U∗Q.
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Proposition 1.2. For any knot K, ΛK is a Legendrian submanifold of U∗Q. (It follows
that we can attmept to do Legendrian contact homology for any knot.)

Proof. Let v ∈ T (ΛK). Then dπ : T (U∗Q)→ TQ sends v to TK. However, by definition,
v is conormal to K so it vanishes on TK. Thus λ(v) = (p ◦ dπ)(v) = 0. �

It turns out that to construct an isomorphism Hcontact
0 (K)→ Hstring

0 (K), we can’t use
the oridinary notion of knot contact homology from above. Instead we need to use a
refinement. The next section will detail how we define the refined version of knot contact
homology.

2. Knot contact homology: details

Our setup is as follows: we have a knot K in Q = R3, and we upgrade to ΛK ⊂ U∗Q.
ΛK is a Legendrian submanifold, where U∗Q has the contact form λ.

The Reeb vector field R is the unique vector field satisfying λ(R) = 1, dλ(R,−) = 0. A
Reeb chord a : [0, T ]→ U∗Q is a solution to a′ = R, a(0), a(T ) ∈ ΛK .

Proposition 2.1. Reeb chords of ΛK are in bijective correspondence with binormal chords
of K. (That is, geodesic segments of R3 meeting K orthogonally at endpoints.) Moreover,
under this correspondence, every Reeb chord for a generically embedded knot K corre-
sponds to a critical point of the Morse function d : K × K → R. (That is, the distance
function.)

Example. A circle in R3 is not generic. An ellipse is a generic embedding of the unknot,
with two critical values of the distance function: the minor axis is a local minimum of the
distance function and thus an index 0 critical point. The major axis is a local maximum
and thus an index 2 critical point.

Proposition 2.2. Let a be a Reeb chord of ΛK . Then the Maslov index of a satisfies

µ(a) = ind(a) + 1

where ind(a) is the Morse index of a. For defining knot contact homology, we’ll actually
use the Morse index rather than the Masloc index; the degree |a| = ind(a).

Example. The elliptic unknot has two Reeb chords, with Maslov indices 1 and 3.

Definition 2.3. Let a = a1a2 · · · an be a word in the Reeb chords of ΛK . The degree of a
is the sum of the degrees of ai. Given a chord a and word b, we write M(a; b) to denote
the moduli space of marked J-holomorphic disks

(D, ∂D)→ (R× U∗Q,R× ΛK)

where a positive puncture maps asymptotically over a, and ` negative punctures map over
b1, . . . , b`.

We need to multiply the codomain by R to symplectify it, and then we can speak of
J-holomorphic curves.
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Proposition 2.4. The moduli space is |a| − |b| dimensional. Notice that the extra R
factor in the codomain means there’s a canonical R action on the moduli space. Now

dimM(a; b)/R = |a| − |b| − 1.

At this point we have the ingredients for classical knot contact homology: our algebra
would be generated by Reeb chords, and the boundary map would count the size of the
moduli spaces. We now start to make some further definitions to encode more information
in our boundary map.

Definition 2.5. A Reeb string with ` chords is an expression

α1a1 · · ·α`a`α`+1,

where a1, . . . , a` are Reeb chords, ai : [0, Ti]→ U∗Q, and αi are paths in ΛK from ai−1(0)
to ai(Ti).

Formally, we can define the path spaces Pxy to be the space

{paths γ : [a, b]→ ΛK , γ(a) = x, γ(b) = y, γ(m)(a) = γ(m)(b) = 0 for all m up to M}.
The derivative condition ensures that gluing two CM paths results in another CM path.
Then α1 ∈ Px0a1(T1), αi ∈ Pai−1(0)ai(Ti), etc.

The idea is that a boundary of a J-holomorphic disk is naturally a Reeb string. In the
usual definition of knot contact homology we count the J-holomorphic disks but never keep
track of how the disks meet the Legendrians. Here we change that.

Given a J-holomorphic disk u, we define

∂(u) = β1b1 · · · b`β`+1

where the bi are the Reeb chords and βi are the paths between chords.

Definition 2.6. We write
R`

to denote the space of Reeb strings with ` chords. R is the union of all the R`s, which is
equipped with a notion of multiplication by concatenation. Finally, we write

C(R) =
⊕

Cd(R)

where Cd(R) denotes the singular d-chains in R.
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How will we homologify this? We’ll define two gradings on C(R). The first comes from
the singular chains:

(1) C(R) has a grading d induces by chain degrees.
(2) There’s also a boundary map ∂sing which sends singular chains to their boundaries.
(3) The homology theory of (C(R), ∂sing) is the singular homology of the space R.

From earlier, we also have degrees from the Morse indices (Maslov indices) of Reeb chords.
This is the chord degree.

(1) A given singular chain σ ∈ C(R) maps onto a finite number of Reeb chords
b1, . . . , b`. The chord degree of σ is∑

|bi|.

(2) More generally, a singular simplex σ ∈ C(R) has a type, a = α1a1 · · · a`α`+1 where
the αi are determined at least up to homotopy. Now for u ∈M(ai; b) we can define

∂(u) ·i a = α1a1 · · ·αi∂(u)αi+1 · · · a`α`+1.

(The idea is that we’re combining the string a with the string b = ∂(u) along their
common Reeb chord.) Now we can define

∂chord(a) =
∑̀
i=1

∑
|ai|−|b|=1

u∈M(ai;b)/R

ε(u)(−1)deg(a)∂(u) ·i a.

(3) Intuitively, instead of just counting holomorphic curves, we’re keeping track of the
information of the boundaries of each holomorphic curve.

(4) We only defined ∂chord for simplices (since they have well defined Reeb string types),
but this extends to chains.

We’re finally ready to define the boundary map C(R) → C(R) that we’ll use for our
enhanced knot contact homology.
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Theorem 2.7. (C(R), ∂Λ = ∂sing + ∂chord) is a degree 1 differential on C(R), where the
degree of a chain in C(R) is the sum of its singular and Reeb degrees. ∂2

Λ = 0, and the
resulting homology theory (which we call knot contact homology) is a well defined knot
invariant. (Specifically, it doesn’t depend on the embedding of the knot, even though this
influences ΛK .)

Example. Can we compute the knot contact homology of an unknot, embedded as an
ellipse? There should only be two Reeb chords to deal with... but it seems messy and I
didn’t have enough time.

3. String homology recap

Last week we learned about string homology. Here’s a very quick refresher.

Definition 3.1. Let K be embedded in R3. Fix a tubular neighbourhood NK of K. An
N-string maps into NK, and a Q-string maps into R3. A broken string with 2` switches
is a collection of such strings, NQNQ · · ·QN , where each N and Q string starts and ends
on K, passing from an N string to a Q string is smooth, and passing from a Q string to
an N string is anti-smooth.

Definition 3.2. We let C0(Σ`) denote the free Z-module generated by broken strings with
2` switches. We let C1(Σ`) denote the free Z-module of homotopy classes of broken strings
with 2` switches.

Next, we need a boundary map C1(Σ`) → C0(Σ`). One possible boundary map is
obvious: it corresponds to the actual boundary,

∂(sλ) = s1 − s0

where sλ is a homotopy of broken strings. Another boundary map is a little more interest-
ing: from last week, the second boundary map corresponds to inserting spikes whereever
our broken string meets the knot, in a way that produces another broken string.

More precisely, δ(sλ) =
∑

i ε
i(sλi ·j s) where we’ve used our notation from contact

homology to insert the spike s.
Notice that ∂ : C1(Σ`)→ C0(Σ`) while δ : C1(Σ`)→ C0(Σ`+1). We define

Hstring
0 (K) = H0(Σ) = C0(Σ)/ im(∂ + δ)

where Ci(Σ) =
⊕
Ci(Σ

`).

Theorem 3.3. Hcontact
0 (K) = Hstring

0 (K).

We won’t prove this, but we’ll describe the chain map from the knot contact complex
to the string complex.
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4. The chain map from knots to strings

Let (Ci, ∂) and (Di, δ) be chain complexes. A chain map ϕi : Ci → Di is a map satisfying

ϕi−1∂i = δi∂i.

That is, it’s a map which respects the degrees of the chain complexes and commutes with
the boundary maps. This is exactly the required property to induce a map on homology
groups.

Proposition 4.1. A chain map ϕ : C → D induces maps ϕ∗ : H(C)→ H(D).

Therefore we’ll define a chain map

(Ccontact(K), ∂Λ)→ (Cstring(K), ∂ + δ).

Loosely speaking, the paths in Ccontact(K) correspond to N-strings, while chords correspond
to Q-strings. At the level of boundary maps, ∂sing corresponds to ∂, and ∂chord corresponds
to δ.

(1) For each `, we define M`(a) to consist of J-holomorphic curves with a positive
marked point mapping onto a, and ` extra marked points with fixed local winding
number 1/2. Unforutnately I’m not really sure what this means (or how to draw it).
We can compactify the Moduli space, and write M`(a). This space has dimension
|a|. (That is, it’s independent of `.)

(2) Given a Reeb chord a, we define Φ`(a) : M`(a) → Σ` to send a J-holomorphic
curve from a to b to the broken string in Σ`, where the path from a to b1 is the
first N-string, then b1 is the first Q-string, the path from b1 to b2 is the second N-
string, and so on. We interpret Φ`(a) as a singular chain (by decomposing M`(a)
into a triangulation, i.e. a union of simplices). Thus we have a map

Φ` : {Reeb chords} → C(Σ`).

(3) The key identity we need is that

Φ`(∂
chorda) = ∂Φ`(a) + δΦ`−1(a).

(4) Next we define Φ(a) =
∑∞

`=0 Φ`(a) ∈ C(Σ). (In fact, the sum to ∞ is shown in the
paper to be a finite sum!

(5) Finally, we extend to simplices σ in C(R). Suppose σ has type

α1a1 · · ·αella`α`+1.

Then Φ(σ) = α1Φ(a1) · · ·α`Φ(a`)α`+1.
(6) In each step, the way we’ve extended the map ensures that the key identity also

generalises. The last step makes ∂sing non-trivial, but we end up with

Φ(∂singσ) + Φ(∂chordσ) = ∂Φ(σ) + δΦ(σ).
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