
GROMOV-WITTEN INVARIANTS AND SW=GR

SHINTARO FUSHIDA-HARDY

Abstract. This is the 3rd installment in a series of talks concerning Taubes’s result
on the equality of Seiberg-Witten and Gromov-Witten invariants. The first two talks
focused on defining the Seiberg-Witten invariants. In this talk, I’ll start by providing
some applications of the Seiberg-Witten invariants so that we know why we bothered to
define them to begin with. Next I’ll describe the Gromov-Witten invariants together with
some applications, and we’ll finish with an overview of the equality of the two invariants.

1. Seiberg-Witten invariants: recap of definition

Let X be a closed smooth oriented 4-manifold. Then X admits a spinc structure, i.e.
a lift of the frame bundle (a principal SO(4)-bundle) to a principal Spinc(4)-bundle. We
write Spinc(X) to denote the collection of spinc structures on X. Recall that

Spinc(4) = U(1)× Spin(4)/± 1,

so there is a natural projection det : Spinc(4) → U(1) which looks like the squaring
double cover. This map determines a complex line bundle L → X, called the determinant
line bundle of s ∈ Spinc(X). Finally we note that any s ∈ Spinc(X) can equivalently
be considered as two principal U(2)-bundles S± → X, with an additional compatibility
condition γ : TX → End(S+ ⊕ S−).

Our objects of interest are pairs (A,ϕ), where A is a U(1)-connection on L, and ϕ ∈
Γ(S+) is a self-dual spinor field. (A U(1)-connection on L is an operator dA : Γ(L)→ Γ(L)
which locally looks like like dAσ = dσ + Aσ, where A ∈ iΩ1(L).) The idea of the Seiberg-
Witten invariants is that they measure how many solutions (A,ϕ) exist given some non-
linear PDEs called the Seiberg-Witten equation (up to gauge).

Specifically, the Seiberg-Witten equations are

DAϕ = 0, F+
A = σ(ϕ)

where DA is the Dirac operator corresponding to A, and F+
A = (FA+?FA)/2 is the self-dual

part of the curvature 2-form of A, and σ is a squaring map.
The Seiberg-Witten equations are invariant under the action of the gauge group G =

{g : X → S1}. We define the moduli space of solutions to the Seiberg-Witten equations
M(s) to be

{(A,ϕ) solving the SW equations}/G.
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Proposition 1.1. Suppose b+2 ≥ 2. ThenM(s) has no reducible solutions, and is hence a
manifold. Moreover, it is either empty or has dimension

dimM(s) =
c1(s)

2 − 2χ(X)− 3σ(X)

4
.

If X is symplectic, thenM(s) is empty or zero dimensional! SinceM(s) is oriented, there
is a well defined signed count SWX(s) of solutions to the SW equations.

Definition 1.2. The Seiberg-Witten invariant is the map

SWX : Spinc(X)→ Z

defined as the signed count of M(s) for each s ∈ Spinc(X).

For closed oriented 4-manifolds, if H2(X;Z) has no 2-torsion, there is a canonical iden-
tification

Spinc(X)
c1−→ Char(X) ⊂ H2(X;Z),

where Char(X) = {a ∈ H2(X;Z) : 〈a, b〉 ≡ 〈b, b〉 mod 2 for all b ∈ H2(X;Z)}. Therefore
we can define the SW invariant to be a map

SWX : Char(X)→ Z.

Definition 1.3. We noted that symplectic 4-manifolds satisfy the useful property that
M(s) is either empty or 0 dimensional. In general, a 4-manifold satisfying this property is
said to be of simple type. It is open whether or not all manifolds are of simple type.

2. Seiberg-Witten invariants: applications

One of the great applications is that it gives comparitively easy proofs of the existence
of exotic smooth structures on 4-manifolds. We start by listing a few properties of the
Seiberg-Witten invariants. X is assumed to be a closed oriented 4-manifold of simple type,
with b+2 ≥ 2, and H2(X;Z) having no 2-torsion. Thus the Seiberg-Witten invariant is a
well defined map SW : Char(X)→ Z.

(1) SWX(k) vanishes for all but finitely many k ∈ Char(X). The {k1, . . . , ks} for which
SWX(k) 6= 0 are called basic classes.

(2) Suppose X = X1#X2, where b+2 (Xi) ≥ 1 for both i. Then SWX vanishes identi-
cally.

(3) (Blow up formula.) Suppose X ′ = X#CP2, and let {k1, . . . , ks} denote the basic

classes of X. Let E be the class of CP1 in CP2. Then {ki±E} are the basic classes
of X ′, and SWX′(ki ± E) = ±SWX(ki).

(4) SupposeX is a complex projective surface. Then c1(TX) is a characteristic element,
and

SWX(±c1(TX)) = ±1.

Theorem 2.1. There exist (simply connected) closed oriented 4-manifolds which are home-
omorphic but not diffeomorphic.
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Proof. Let X1 = K3#CP2, and X2 = 3CP2#20CP2. These are connected sums of simply
connected manifolds, and hence simply connected. By Freedman’s classification of simply
connected 4-manifolds, they are homeomorphic if they have equivalent intersection forms

QXi : H2(Xi;Z)⊗H2(Xi;Z)→ Z.

We have

QX1 = 2(−E8)⊕ 3

(
0 1
1 0

)
⊕ (−1), QX2 = 3(1)⊕ 20(−1).

These can easily be shown to be equivalent using the classification of unimodular bilinear
forms. Alternatively, one can directly prove this by finding the appropriate change of basis.
Therefore X1 and X2 are homeomorphic.

On the other hand, by property 4 of the SW invariants, since K3 is a complex projective
surface, SWK3(c1(TK3)) = 1. By property 3,

SWX1(c1(TK3) + E) = SWK3(c1(TK3)) = 1.

In particular, SWX1 is not identically vanishing.

However, we can write X2 as (2CP2#20CP2)#(CP2). Then both sides of the connected
sum have b+2 ≥ 1, so SWX2 vanishes identically by property 2. Therefore

SWX1 6= SWX2 ,

so X1 and X2 are not diffeomorphic. �

3. Gromov-Witten invariants: definition

Loosely speaking, the Gromov-Witten invariants are a count of isolated J-holomorphic
curves in a symplectic manifold. Several weeks ago Sarah introduced the “symplectic
geometry from the J-holomorphic perspective”. I will briefly recount some of the relevant
definitions.

Definition 3.1. For (M, j), (N, J) almost complex, the Cauchy-Riemann equation for a
map f : M → N is

df ◦ j = J ◦ df.
If f satisfies the Cauchy-Riemann equation, it is said to be (j,J)-holomorphic.

Remark. The above condition is exactly the requirement that f preserves the complex
structures. As an exercise, one can compute the standard Cauchy-Riemann equations for
f : C→ C from this version.

To make things even more concise, we can introduce the holomorphic and antiholomor-
phic differentials:

Definition 3.2. Given f : (M, j) → (N, J), the holomorphic and antiholomorphic differ-
entials are given by

∂Jf =
1

2
(df − J ◦ df ◦ j), ∂Jf =

1

2
(df + J ◦ df ◦ j).
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Remark. Notice that d = ∂J + ∂J . Moreover, f is holomorphic if and only if ∂Jf = 0.

Proposition 3.3. Let (M,ω) be a symplectic manifold. An almost complex structure J
on M is said to be compatible if

ω = J∗ω, ω(v, Jv) > 0 whenever v 6= 0.

Given any symplectic manifold, there is a contractible family of compatible complex struc-
tures on it, which we denote by J (M,ω).

Definition 3.4. Let (M,ω) be a symplectic manifold, and J ∈ J (M,ω). Let (Σ, j) be a
Riemann surface. A map u : Σ→M is a J-holomorphic curve if ∂Ju = 0.

Definition 3.5. Let (M,ω) be a symplectic manifold, and J ∈ J (M,ω). Fix a homology
class A ∈ H2(M ;Z), and a Riemann surface (Σ, j). We write

M(A,Σ; J) := {u ∈ C∞(Σ,M) : [u] = A, ∂Ju = 0}/ ∼

where u ∼ u′ if they’re isomorphic. (That is, there is a biholomorphic map ϕ : Σ→ Σ such
that u = u′ ◦ ϕ.)

A little more generally, we can un-fix the choice of Riemann surface, and simply consider
maps from arbitrary Riemann surfaces with a prescribed genus.

Definition 3.6. Given (M,ω) and J ∈ J (M,ω), A ∈ H2(M ;Z), and an integer g ≥ 0,

Mg,0(A; J) := {u : (Σg, j)→M : [u] = A, ∂Ju = 0}/ ∼ .

Finally we can also add marked points, which are an ordered tuple of distinct points in
the domain.

Definition 3.7. Given (M,ω, J), A ∈ H2(M ;Z), and g,m ≥ 0, the moduli space of J-
holomorphic curves in M with genus g and m marked points representing A is

Mg,m(A; J) := {(Σ, j, u, (z1, . . . , zm))}/ ∼,

where (Σ, j, u,Θ) ∼ (Σ′, j′, u′,Θ′) if there is a biholomorphism ϕ : Σ → Σ′ such that
u = u′ ◦ ϕ, and ϕ(Θ) = Θ′ (with orders preserved).

As mentioned at the start of this section, the goal of the Gromov-Witten invariants is to
“count the number of curves” inMg,m(A; J). For this we want the space to be a compact
smooth manifold.

Theorem 3.8. Let M be 2n-real-dimensional. For generic J , Mg,m(A; J) is a smooth
manifold of dimension

dimMg,m(A; J) = (n− 3)(2− 2g) + 2c1(A) + 2m.

All we need now is a compactness result, but this also holds by theorem that Sarah
explained a few weeks ago:

Theorem 3.9 (Gromov compactness). The space Mg,m(A; J) is compact.
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Here Mg,m(A; J) is obtained from Mg,m(A; J) by gluing J-holomorphic bubble trees.
More formally, we can define

C(A; J) := {u : (Σ, j)→M : [u] = A, ∂Ju = 0},
where u : (Σ, j) → M is a nodal curve. Then the closure of Mg,m(A; J) in C(A; J) is
compact (and the boundary points are well understood: they consist only of finite spherical
bubble trees).

By establishing that Mg,m(A; J) is a smooth compact manifold, we can proceed to try
and make some invariants!

The first observation is that the m marked points of Mg,m(A; J) provide some natural
evaluation maps: for each i, we define

evi :Mg,m(A; J)→M

by
(Σ, j, u, (z1, . . . , zm)) 7→ u(zi).

There’s another map
π :Mg,m(A; J)→Mg,m

defined to be a forgetful map. Here

Mg,m := {u : (Σg, j)→ {pt} : [u] = 0, m marked points}/ ∼=Mg,m({pt}, 0; J).

The forgetful map is given by u 7→ p ◦ u, where p : M → {pt}. We now have a diagram

Mg,m(A; J) M × · · · ×M

Mg,m.

π

(ev1,...,evm)

Definition 3.10. The Gromov-Witten invariants are the homomorphisms

GWM
g,m,A : H∗(M ;Q)⊗m ⊗H∗(Mg,m;Q)→ Q

defined by

GWM
g,m,A(a1, . . . , am;β) :=

∫
Mg,m(A;J)

ev∗1 a1 ^ · · ·^ ev∗m am ^ π∗PD(β),

for (M,ω) symplectic with compatible almost complex structure J , A ∈ H2(M ;Z), and
g,m ≥ 0.

This is nonsense! Let’s try to at least interpret it somewhat. For each i, let Xi be
Poincaré dual to ai. Then ev∗i ai is dual to the collection of curves u with u(zi) ∈ Xi

(which is a space in Mg,m(A; J). The cup product is Poincaré dual to intersections, so
ev∗1 a1 ^ · · · ^ ev∗m am represents all the maps with u(zi) ∈ Xi for each i. Finally by
cupping this with π∗PD(β), we restrict our collection to those curves which represent β
apon projection to Mg,k. The integral essentially counts the collection of all such curves.
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By playing around with g,m, and A, we have a vast number of Gromov-Witten invariants
for a given symplectic manifold.

Why do we care about Gromov-Witten invariants?

(1) The values of the invariants themselves is interesting - in the setting of algebraic ge-
ometry (to which Gromov-Witten invariants can be transported), counting curves
is a classical difficult problem which is formalised by the Gromov-Witten invari-
ants. The Gromov-Witten invariants are difficult to compute, but properties of the
invariants can be decuded which aid in solving these problems.

(2) Defining the invariants is technical and difficult, but these issues turned out to
be the same ones that arise in other settings such as defining Hamiltonian Floer
homology (which was used to solve the Arnold conjecture). This subsequently gave
rise to other Floer homologies which have been very useful in e.g. low dimensional
topology.

(3) Mirror symmetry!
(4) Distinguishing previously indistinguishable symplectic manifolds. (This application

is actually a bit fake, since the invariants are very difficult to compute so it hasn’t
been as successful in this realm as one might expect.)

4. The statement SW = Gr

The main result of Taubes is that the Seiberg-Witten invariants for a symplectic 4-
manifold X with b+2 ≥ 2 are equivalent to its Gromov-Witten invariants. Formally, the
theorem states that

SWX(K∗X + 2ε) = Gr(ε).

In the rest of this section we’ll interpret what this actually means.
On the left, we’ve written SWX(K∗X+2ε). Since X is symplectic, it admits a compatible

almost complex structure J . This determines a canonical spinc structure sJ . Recall that we
have a map c1 : Spinc(X)→ H2(X;Z). It turns out that c1(sJ) ∈ H2(X;Z) is independent
of the choice of compatible almost complex structure J ! It only depends on (X,ω), and
we denote it by K∗X This is actually the chern class of the anti-canonical bundle. (I.e. the
dual of the top exterior power of the complex vector bundle (TX, J).)

Any s ∈ Spinc(X) can now be written in the form sJ + ε, so c1(sJ + ε) = K∗X + 2ε ∈
H2(X;Z) parametrises all of the spinc structures. Interpreting the Seiberg-Witten invariant
as a map

SWX : Char(X)→ Z,
everyting in Char(X) can be written as K∗X + 2ε.

On the right, we’ve written Gr(ε). This is called the Gromov invariant and is a spe-
cific version of the Gromov-Witten invariant. In Gromov-Witten theory, we consider only
connected curves, but the Gromov invariant allows for disconnected curves.

Since ε ∈ H2(X;Z), by Poincaré duality, it determines a homology class Aε ∈ H2(X;Z).
We define G(Aε; J) to be the moduli space of all (possible disconnected) J-holomorphic
curves representing the class A. One can show that for J generic, G(Aε; J) is a compact
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smooth manifold with
dimG(A; J) = K∗X ·Aε +Aε ·Aε.

This is always even dimensional; we can write 2d = dimG(A; J). To carry out a signed
count we want to reduce the dimension to 0 - which we do by adding d marked points.

We define the Gromov invariant to be

Gr(ε) = #G0,d(A; J).

5. A proof outline of SW = Gr in a special case

The full proof of this theorem takes 400 pages of analysis and is definitely beyond the
scope of this talk. The idea of the proof is to deform the Seiberg-Witten equations so they
get “close” to a Cauchy-Riemann operator on the line bundle of the Chern class ε. Solutions
to the Seiberg-Witten equations then correspond to an almost-holomorphic section of the
line bundle, and the zero set of the section is a J-holomorphic curve representing ε.

However, an important preliminary result connecting symplectic geometry and 4-dimensional
topology is the following:

Theorem 5.1. Let X be a symplectic manifold with b+2 ≥ 2. Then

SWX(±K∗X) = ±1.

Proof idea. We can perturb the Seiberg-Witten equations

DAϕ = 0, F+
A = σ(ϕ)

to look like
DAϕ = 0, F+

A − F
+
A0

= σ(ϕ)− ρ2ω
where A0 is a special connection satisfying some properties and ρ is a parameter. The
existnce of A0 satisfying prescribed properties depends on X being symplectic. There’s
a bijection between solutions of the Seiberg-Witten equations and the perturbed version,
but in this version as we take ρ to infinity, there’s a unique solution. �
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