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What is the adjunction inequality?

Low dimensional topology was revolutionised in the 80s and 90s by the introduction of gauge theory.
Notably, gauge theory was used to demonstrate the first examples of exotic smooth structures on some
4-manifolds, as well as the first solutions to some minimal genus problems for embedded surfaces. The
adjunction inequality is an example of the latter.

Fix a closed symplectic manifold (X, w) with [w] integral. If £ C X is a smoothly embedded surface
with positive sympletic area, then

29(K) — 2 2 K-K — (1 (w), [K]).

Intuitively the homological information expressed on the right side of the inequality provides a lower
bound on the genus of /C. This is just one example of an adjunction inequality, as stated in [PLC2]. Using
Seiberg-Witten gauge theory, there is an adjunction inequality for surfaces in closed smooth 4-manifolds
with non-trivial Seiberg-Witten invariant (which need not be symplectic).

What are trisections?

Trisections are a 4-dimensional analogue to Heegaard splittings of 3-manifolds. Specifically, if X is a
closed smooth 4-manifold, a trisection of X 1s a decomposition X = X; U X, U X3 where each X is a 4-
dimensional 1-handlebody, each H; = X;N.X;_; is a 3-dimensional 1-handlebody, and >> = XN XoN X3
1s a closed surface and the boundary of each H,.

The big idea is that trisections are determined by their spines, i.e.
the union of the H;. This allows 4-dimensional manifolds to be
encoded in lower dimensions. The hope now is that techniques from
algebraic and geometric topology (i.e. “combinatorial” techniques)
will be sufficient to reprove results that initially required gauge
theory.

X

In our context Weinstein trisections are used, which are trisections
whose three sectors are all Weinstein domains.

Surfaces in bridge position

Let £ C X be a surface embedded in a trisected 4-manifold. If K is in bridge position it is determined by
its intersection with the spine - in much the same way that X is determined by its spine. K is said to be in
bridge position if

e its intersection with each X is a disjoint union of disks which can be isotoped to simultaneously lie
on 0.X; (i.e. a trivial disk tangle), and

* its intersection with each H; is a disjoint union of arcs which can be isotoped to simultaneously lie
on OH; (i.e. a trivial tangle).

Moreover, its genus is given by 2 — 2¢g(K) = x(K) = ¢1 + ¢2 + ¢3 — b where b is half the number of
intersection points in JCMN 32, and each ¢; is the number of components in XN OX;. This is the first stepping
stone for proving an adjunction inequality using only combinatorial techniques.

The proof ingredients

1. Finding a trisection

It turns out that all closed symplectic 4-manifolds admit Weinstein
trisections! Auroux showed that any closed symplectic 4-manifold
X admits a branched cover

X — CP?.

The branch locus R C CP? can be isotoped to be in transverse bridge
position in a given Weinstein trisection of CP?, and a Weinstein tri-
section of X 1is then induced via pullback. (Roughly speaking a sur-
face is in transverse bridge position if it 1s in bridge position and the
K N 0X; are transverse links. Note that 0.X; is a contact manifold.)

CP? admits a remarkably simple Weinstein trisection: the standard
trisection of CP? has sectors homeomorphic to 4-balls, and a spine
formed by gluing solid tori to a central torus > = T,

2. Transverse bridge case

Let us assume I C X is in transverse bridge position with respect to
a Weinstein trisection. Each K; = K N 90X is a transverse link, and
has a well defined self-linking number sl (k).

By functoriality, the first Chern class ¢;(w) is the pullback of the
first Chern class of the Fubini-Study form wrg of CP?. This pro-
vides a Poincaré dual whose intersections with the trisection can be
understood. It can then be shown that

sl(Ky) + sl(Ks2) + sl(K3) = K-K — {c1(w), [K]) = b

(where b = %#IC M X.) The adjunction inequality now follows from
the last identity in ingredient 4 and the slice-Bennequin inequality.

3. General case: isotoping

Generally an embedded surface K C X is not in transverse bridge
position, nor is it isotopic to a surface in transverse bridge position.
However, it is possible to isotope I so that the tangles /C N H; are
homotopic in H; to positively transverse tangles (provided K has pos-
itive symplectic area). Our strategy is now:

(a) Isotope K to a homotopically transverse surface ' as above.
The terms in the adjunction inequality are isotopy invariant.

(b) Homotope K’ to an immersed surface £ in transverse bridge
position. Trace how the terms of interest change from K’ to L.

Showing that K can be isotoped to be homotopically transverse re-
quires studying the fundamental groups of the H,.

4. General case: homotoping

Let ' C X be in homotopically transverse bridge position. The
links K; are homotoped to positively transverse links L, C 0X,.
Their unions over ¢ are links K, L C Y = L;0X,. The homotopy
K ~ L is encoded by 2n crossing changes (lifted from n crossing
changes in the H;). These are surgically resolved by removing two
4-balls from each crossing pair in Y, and gluing in [0, 1] x S®. Links
K : L C Y are induced from K and L by adding 2n bands: two for
each [0, 1] x S3. From the earlier special case we have

sl(L) = K-K — (c1(w), ) —b.
Adding bands changes the self linking number to
SI(L) = K-K — {c1(w),K) — b+ 2n.
K and L are 1sotopic, and K bounds a ribbon surface F satisfying

X(F):Cl+62+63—2n.

5. Slice-Bennequin inequality

Rasmussen’s invariant provided the first combinatorial proof of the
slice-Bennequin inequality for S®: given a transverse link L C S5, if
F C B*is a smoothly embedded surface with boundary L, then

sI(L) < —x(F).
A combinatorial proof of the above inequality for links in #;S! x
S? is given in [PLC]. Combining this inequality with those from the
previous proof ingredient gives

K-K—{c1(w), L) —b+2n<2n—cy —cy — c3.

Substituting the bridge position formula for y(X) finishes the proof!
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