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Abstract. What is the minimum genus of a surface embedded in a 4-manifold represent-
ing a given homology class? Answers to these questions (such as the adjunction inequality)
were originally found with gauge theory, but recently Peter Lambert-Cole gave a novel
proof of the adjunction inequality using trisections. The gauge theory machinery also
applies to manifolds with boundary, provided the boundaries are convex. I’ll describe
how trisections could enable us to extend some results to the non-convex setting.

1. The landscape

My ambitious goal is to solve problems of the following form:

Given some data, what is the minimum genus of a surface K embedded in X4 and
satisfying this data?

Traditionally theorems of this form were proven using gauge theory. A couple of years ago,
Peter Lambert-Cole gave a combinatorial proof of the following result.

Theorem 1.1 (Adjunction inequality). (Lambert-Cole) Let X be a closed symplectic 4-
manifold, and K ⊂ X a smoothly embedded essential surface with [K] non-torsion, then

−χ(K) ≥ [K]2 − 〈c1(X), [K]〉.

This can be thought of as

2g − 2 ≥ homological info.

Therefore the homology class of the surface gives a lower bound on the genus of any
embedded representative of the surface.

Proof. The outline is as follows:

(1) Show that every closed symplectic 4-manifold admits a Weinstein trisection. (We
will imminently define these.)

(2) Show that an embedded surface in transverse bridge position satisfies the inequality.
(3) Attempt to isotope an arbitrary surface to be in transverse bridge position. In

general this can’t be done, but if we carefully keep track of exactly how it fails we
can do surgery to achieve the desired normal form without altering the inequality.
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2. What are trisections?

For the next while, I’ll be dishing out definitions and examples - so what exactly is a
trisection?

Definition 2.1. Let X be a closed 4-manifold. A trisection of X is a decomposition of X
into three standard pieces which all glue together in a standard way. Specifically:

(1) Each Xi = \kS1 ×B3 for some k.
(2) Each Hi = Xi ∩Xi+1 = \gS1 ×B2 for some g.
(3) Σ = ∩iH1 = Σg for the above g. (Note that any two His form a Heegaard splitting.)

Theorem 2.2. Basic properties of trisections of 4-manifolds.

(1) They exist! For any oriented closed 4-manifold.
(2) The 3-dimensional spine (H1 ∪H2 ∪H3) determines the 4-manifold.
(3) Since 3-dimensional manifolds are determined by Heegaard diagrams, and the spine

consists of 3-dimensional pieces, the whole 4-manifold is encoded by a trisection
diagram (three simultaneous Heegaard diagrams).

Example. The 4-sphere has the following trisection:
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Example. The complex projective plane CP2 has the following trisection:

We can also encode surfaces in trisections.

Theorem 2.3. Let X be a trisected 4-manifold, and K ⊂ X an embedded surface. Then
(K, X) is a bridge trisection if K is partitioned into pieces in a standard way inside X.
Specifically:

(1) Each Ki = K∩Xi is a disjoint union of disks. Moreover, these disks can be isotoped
rel boundary to lie in ∂Xi = Hi ∪Hi−1. (i.e. a trivial disk tangle.)

(2) Each τi = Ki ∩Hi is a disjoint union of arcs which can be isotoped rel boundary to
lie in ∂Hi = Σ. (i.e. a trivial tangle.)

Theorem 2.4. Basic properties of bridge trisections.
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(1) They exist! Any embedded surface in a trisected 4-manifold can be isotoped to be
in bridge position.

(2) The 3-dimensional spine (τ1 ∪ τ2 ∪ τ3, H1 ∪H2 ∪H3) determines the pair (K, X).
(3) Since each tangle τi is determined by a tangle diagram (i.e. a projection to ∂Hi =

Σ), the whole bridge trisection is encoded by a bridge trisection diagram (i.e. a
trisection diagram together with three simultaneous tangle diagrams)

Example. Here’s a diagram for a 2-sphere sitting inside a 4-sphere.

Example. Here’s a diagram for a degree 2 complex curve in CP2.
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3. Relative trisections and geometry

Next I’ll say a bit about what I’m doing. The theory of trisections is well developed in the
closed case, and its useful in geometry has been exhibited by Peter Lambert-Cole’s proof
of the adjunction inequality. I’m working in the relative case - I want to establish analo-
gous results for manifolds with boundary. This is where we switch from the Adjunction
inequality to the related slice Bennequin inequality:

−χ(K) ≥ sl(K),

for transverse knots in the boundary of a 4-ball. This can be generalised:

Theorem 3.1 (Slice Bennequin inequality). (Lisca-Matić.) Let X be a Stein 4-manifold
with boundaryY . Let K ⊂ Y be a transverse knot, and suppose K is an orientable smooth
surface in X bound by K. Then

−χ(K) ≥ sl(K,K).

It’s a similar form to the slice Bennequin inequality for knots on the boundary of a
4-ball, but now we need to be a little careful about a few things.

(1) What exactly is a Stein manifold with boundary? You can think of this as a complex
4-manifold with boundary with extra properties, and in particular the boundary
is convex. Formally, convex means there’s an outward pointing vector field ρ such
that

ιρω = α

induces the contact structure on the boundary.
(2) What’s sl(K,K)? In the 4-ball case we defined the self linking number as an actual

linking number of the knot with a certain perturbation of the knot. This is because
the self linking number in the 4-ball is independent of the surface bound by the
knot. In a more general 4-manifold, we need to keep track of the surface as well.
Specifically, we define

sl(K,K) = e(NK, s)− c1(detTX|K, s),

where s is a non-vanishing vector field in the contact distribution restricted to K.
(That is, it’s defined as the difference of two characteristic classes.)

Goal. I wish to understand genus bounds for surfaces in symplectic 4-manifolds with
boundary, even if the boundary isn’t convex.

Example. Consider

CP2 −B4.

This is a symplectic 4-manifold with boundary, but the boundary is concave. The slice
Bennequin inequality from above (or any other gauge theoretic versions) don’t apply be-
cause of this. Unfortunately, the slice Bennequin inequality is false, because I can provide
a counter example.
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We’ll make use of the formula

sl(K,K) = [K′]2 − 〈c1(CP2),K′〉+ sl(K).

This comes from expressing both of the self linking number terms as differences of char-
acteristic classes. Each of the characteristic classes can be expressed as an intersection,
and the sum of intersections in the two pieces add to the global intersection terms in the
formula.

By taking K to be the right handed trefoil, we can find a surface K bound by K in
CP2−B4 with genus 0 and trivial relative homology class. On the other hand, K bounds a
genus 1 surface in B4. Their union is a homologically trivial surface in CP2. From general
theory,

sl(K) = 1.

This tells us that

sl(K,K) = 1.

On the other hand, since K is a disk, χ(K) = 1. Clearly it’s not true that

−χ(K) ≥ sl(K,K).

Peter Lambert-Cole has described a criterion for the slice Bennequin inequality to hold in
a general setting (which doesn’t require convexity). This example shows that the criterion
doesn’t always hold, even though it’s guaranteed to hold for the closed case (which is how
he proved the adjunction inequality). Namely:

Theorem 3.2 (slice Bennequin inequality). (Lambert-Cole) Let (X, J) be a compact, sym-
plectic 4-manifold with boundary with a Weinstein trisection. Let K be an embedded surface
in homotopically transverse bridge position, and transverse boundary K = ∂K. Then

−χ(K) ≥ sl(K,K).
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To interpret this theorem, I need to define trisections for manifolds with boundary, as
well as Weinstein trisections and the condition of a surface being in homotopic transverse
bridge position. The main idea is that the above example fails the conclusion of this
theorem, even though CP2−B4 admits a Weinstein trisection, and K can be put in bridge
position. This means there’s some obstruction to putting K into homotopically transverse
bridge position.

Goal. I wish to understand when surfaces in trisections can be put into homotopic trans-
verse bridge position. (This is being pursued by first developing an understanding of
diagrams of relative bridge trisections.)

Definition 3.3. Let X be a 4-manifold with boundary ∂X = Y . (This is a slightly
informal definition, but) a trisection of (X,Y ) is a decomposition X = X1 ∪X2 ∪X3 and
Y = Y1 ∪ Y2 ∪ Y3 such that

(1) Each Xi = \kS1 ×B3 for some k.
(2) Each ∂Xi = #kS1 × S2 = Yi ∪Hi ∪Hi−1.
(3) X1 ∩X2 ∩X3 is a surface Σ of some genus g with b boundary components.
(4) Each Xi ∩Xi+1 is a 3-dimensional compression body Hi from Σ to Yi ∩ Yi+1.

A relative bridge trisection of (X,K) is a surface K embedded in a trisection 4-manifold X
with boundary, such that

(1) Each Ki = K ∩Xi is a trivial disk-tangle.
(2) Each τi = K ∩Hi is a trivial tangle.

Next, we introduce some geometry:

Definition 3.4. A Weinstein trisection is essentially a trisection in which each sector Xi

is a Weinstein domain. This essentially means there’s a Liouville vector field on each sector
inducing a contact structure on the boundary of the sector, (and the boundary is convex).
Each Hi then inherits a foliation ker(αi − αi−1).
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A surface in a Weinstein trisection is in homotopically transverse bridge position if it’s in
bridge position, has complex bridge points, and the tangles τi = K∩Hi are homotopically
transverse. That is,

(1) K is J-holomorphic in a neighbourhood of each point in K ∩ Σ.
(2) Each tangle τi can be homotoped rel boundary (in Hi) so that βi(τi) > 0. (That

is, the tangles are positively transverse to the induced foliation on each Hi.)

4. Calculations with relative trisections

I’m now going into introduce relative bridge trisection diagrams and do a few calculations
with one.

Example. We’ll consider the right handed trefoil in S3. The diagram consists of 4 disks:
each one corresponds to the four surfaces lying in the spine of the relative trisection. Each
surface also has arcs on it - these come from projecting the tangles K∩Hi,K∩Yi onto the
boundary of each Hi or Yi. Each boundary is a 2-sphere decomposed into two disks along
∂Σ = S1. Each component of the diagram is one of these disks together with the projected
arcs.

Using this diagram I can compute things like the genus, orientability, and homological
data. As an example, I’ll compute e(NK, s) for a section s of the contact distribution
on the sphere. (Recall that this is part of the definition of the self linking number.) We
can take s to be a perturbation “in the upwards direction” in the diagram. Then I draw
another copy of K perturbed upwards and count intersection points.
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Goal. I wish to expand my understanding of these diagrams. Specifically, I don’t currently
have a method of determining a surface corresponding to Chern classes (which I would then
intersect with a given surface to compute c1(det(TX)|K, s) and ultimately the self linking
number).

9


	1. The landscape
	2. What are trisections?
	3. Relative trisections and geometry
	4. Calculations with relative trisections

