AN APPLICATION OF MODULI SPACES TO LEGENDRIAN LINKS

SHINTARO FUSHIDA-HARDY

ABSTRACT. This quarter the Stanford student symplectic seminar was all about mod-
uli spaces of J-holomorphic curves. To finish the quarter, here’s a talk applying what
we've learned about so far. I'll introduce Legendrian contact homology and discuss how
it answered an important question in knot theory, as well as some higher dimensional ap-
plications. The description of Legendrian contact homology comes from Ekholm, Etnyre,
and Sullivan (2005).

1. LEGENDRIAN LINKS AND THE CLASSICAL INVARIANTS

Knots in the usual sense are defined as smooth embeddings K : S! — R3, and studied
up to smooth isotopy. Knots are interesting in their own right, but also help us understand
three dimensional topology. Legendrian knots and links are their counterparts in the
contact category.

Definition 1.1. Let M be a 3-manifold. A contact structure on M is a completely non-
integrable plane field ¢ in M. This means that there are no surfaces in M which are
everywhere tangent to &.
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Definition 1.2. A link L in (M, &) is Legendrian if it is tangent to £ at all points in L.
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Example. The standard contact structure on R? is given by

§ = span 9.9 + 9
- P oy’ Ox Yo. [
An example of a Legendrian (un)knot has been drawn in the contact structure. To better

understand how it sits in R? (since looking at a picture makes this difficult), see the two
projections underneath.

These two projections are very important and have their own names! The left one is called
the “front projection”, and the right the “Lagrangian projection”.

In topology, we consider knots and links up to smooth ambient isotopy. In contact topol-
ogy, we consider Legendrian knots and links up to isotopy through a family of Legendrian
knots and links. Given two Legendrian knots which are topologically isotopic, we shouldn’t
expect them to be Legendrian isotopic. Indeed, there are Legendrian isotopy invariants of
Legendrian knots (and links) unrelated to topological type:

Definition 1.3. The Thurston-Bennequin number tb(L) of L is the linking number of L
with a push-off of L in the z-direction. (A more contact-geometric definition is to compare
the framings given by a Seifert surface with that induced by the intersection of the contact
distribution with the normal bundle to L.) This is most easily computed using the front
projection: simply draw a second copy of the link translated vertically, and make sure that
in every crossing the top-left to bottom-right arc crosses over the bottom-left to top-right
arc.

Definition 1.4. The rotation number r(L) of L is the winding number of L in the La-
grangian projection. (A more contact-geometric definition is to use a Seifert surface to
induce a trivialisation on |7, from which the winding number can be computed.)

The following are examples of Legendrian unknots with distinct Thurston-Bennequin
invariants; the left knot has tb = 1 and the right tb = —1.

“TOPOLOGILAL  UNKNETS

The classical invariants of Legendrian knots are exactly the topological knot type, Thurston-
Bennequin number, and rotation number.

Remark. Why are there no more classical invariants? The Thurston-Bennequin number
captures the normal direction to L in the contact distribution, and the rotation number
the tangent direction.

. Now that we have a collection of invariants, there are two natural questions we can
ask:



e Are the invariants necessary? That is, is every combination of values for knot type,
tb and r satisfied by some Legendrian knot?

e Are the invariants sufficient? That is, are two Legendrian knots (or links) Legen-
drian isotopic if they have the same classical invariants?

(1) Bennequin showed that not all combinations of classical invariants are realised by
Legendrian knots: this follows from the Bennequin inequality

tb(L) + |r(L)] < =x(L).

(2) Eliashberg and Fraser showed that the invariants are sufficient in a special case:
two Legendrian unknots are Legendrian isotopic if and only if they have the same
classical invariants.

(3) This is not true in general! (Chekanov.) We can use Legendrian contact homology
to find Legendrian knots which share classical invariants but are non-Legendrian
isotopic. The rest of this talk will be a proof of this result.

2. SUMMARY OF MODULI SPACE RESULTS

Over the course of the quarter we established various properties of the moduli space of
J-holomorphic curves. The fundamental object of interest was the following:

Definition 2.1. Fix a compact symplectic manifold (M, w), a compatible almost-complex
structure J, and a homology class A € Ho(M;Z). The moduli space of J-holomorphic
curves in M with genus g and m marked points representing A is

Mg,m(A; J) = {(Egaja u, (Zla s ,Zm))}/ ~
where we’re modding out by biholomorphisms preserving the additional structure.

What results do we have?

e Mgy m(A;J) is a finite dimensional manifold.

(1) Express the moduli space as the zero-set of some section of a vector bundle
over an infinite dimensional Fréchet manifold.

(2) Upgrade this to a Banach manifold using Banach theory.

(3) Use Fredholm theory to show that the zero set is finite dimensional.

(4) Use transversality together with the above to conclude that the zero set is
a finite dimensional manifold.

e Gromov compactness: The “closure” M, ,,(4;J) is compact. Mg, (4, J) is
defined by including J-holomorphic bubble trees. Compactness is the statement
that sequences of J-holomorphic curves with bounded energy converge to something
in Mg (A, J).

e Gluing: given two J-holomorphic curves we can glue them together to form a
bubble tree. The gluing theorem says that this is approximated by a J-holomorphic
curve. This is a converse to Gromov compactness.
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ooV COMPACTNESS

3. DEFINING LEGENDRIAN CONTACT HOMOLOGY

Originally this was carried out in dimension 3, in which the whole theory reduces to
combinatorics, and we never have to mention moduli spaces. This is actually sufficient
for the purposes of showing that Legendrian knots aren’t determined by their classical
invariants. However in this section I'll present the more general case.

Definition 3.1. Parametrise R***! by (z1,y1,...,%n, Yn,2). The standard contact struc-
ture is the kernel of the 1-form

n
a=dz — ijdyj.
j=1
A Legendrian submanifold of R?*"*1 is an n-manifold which is everywhere tangent to the
contact distribution.

Remark. A Legendrian submanifold of R? is exactly a Legendrian knot.

Legendrian submanifolds in general also have analogues of the classical invariants. Leg-
endrian contact homology establishes that these classical invariants do not determine Leg-
endrian submanifolds up to Legendrian isotopy.

Definition 3.2. Let L € R?"*! be Legendrian. We will define a corresponding differen-
tially graded algebra (A,d). The Legendrian contact homology of L is the homology of

(A, 9).
First, we must define the algebra itself, A. This is generated by Reeb chords of L.

Definition 3.3. Let (M, ker «) be a contact manifold, and L C M Legendrian. The Reeb
vector field of M is the unique vector field determined by

a(X)=1, da(X,:)=0.

A Reeb chord of L is a segment of a flow line of X starting and ending on L. In R?7+1
the Reeb vector field is exactly %. The Reeb chords are exactly the vertical arcs in R?*+1
which start and end on L.

As in the 1-dimensional case, we have a Lagrangian projection II : R>"*!1 — R?" which
forgets the z component. Assuming L is generic (so that II(L) has at worst double-points
of intersection), the Reeb chords of L are in bijective correspondence with double points of
its Lagrangian projection. We'll write C = {¢1,...,¢,} to denote the set of Reeb chords.
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Now we're ready to define A. Let {¢1,...,tx} be a basis of Hi(L), with its elements
written multiplicatively. The group ring Z/2Z[H,(L)] is a free Z/2Z-module, generated
with basis the elements of H;(L), but also with a ring structure induced from group
multiplication in H;(L). Now A is the free associative unital algebra generated by C over
this group ring. An arbitrary element of A looks like

ni,i N,
E tl "'tk C;,
)

where ¢; = ¢;, - - - ¢;, is a word in the ¢;.
Next, we define the differential. As an equation it looks pretty familiar, it’s like all the
other differentials we see in Floer-type homology theories:

da = > (#M(a; A, b)) Ab
be(C), AcH, (L)
dim M(a;A,b)=0

for generators a € C. I've written (C) to mean the words in C.

Is this well defined? the target space is indeed A, provided that the count #M(a; A, b)
is well defined and finite, with at most finitely many terms in the sum non-zero. (This is
not immediately clear, because we could be summing over infinitely many terms.) At this
point - we haven’t even defined the relevant moduli space!

Definition 3.4. Write D,,+1 to denote the unit disk in C with m + 1-marked points
{po,...,pn—1} arranged anticlockwise on the boundary. Then M(a; A, b) consists of holo-
morphic disks with boundary on L. Formally, this is

M(a; A,b) = {u: (Dps1,0Dpmy1) — (R¥TI(L))}/ ~

where a is a Reeb chord, A € Hy(L), and b = by ...b,, is a word of Reeb chords, and the
maps u have the following properties:

e They are continuous and holomorphic on the interior.

e u(po) is positive, while the other u(p;) are negative. Roughly speaking this means
that u increase anticlockwise near u(pg), and conversely at the other p;. (See the
figure below).

e u(py) = a and u(p;) = b;.

e Restricting u to 0D,,+1 — {p;}, there is a continuous lift u of the map into L.
(Again, see image below.)

e The image of @ glued to capping paths of each Reeb chord gives a loop in L repre-
senting A. (See image below.)

Here the capping paths are chosen in advance and are used to define the grading on A.
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D: € C T & € =R"

By Fredholm theory etc, the moduli spaces are finite dimensional manifolds! It follows that
whenever the moduli space is finite dimensional, it’s a discrete space. It turns out that
Gromov compactness holds for these moduli spaces, so the moduli spaces are moreover
finite. The differential is now well defined.

Theorem 3.5. The moduli spaces M(a; A,b) satisfy the gluing theorem. More formally,
suppose M(a'; A, b’) and M(a; A,b) are 0-dimensional, with the jth Reeb chord in b in

a’. Then there is an embedding

G : M(a; A,b) x M(a'; A',b') x (p,00) = M(a; A+ A, by (b")).

If u € M(a;A,b) and u' € M(a’; A',b'), then G(u,v,p) converges to the broken disk
(u,u’) as p — co. Here the notation by;;(b') means the Reeb chord b; is removed from b
and replaced with the word b’.

The following picture shows what the gluing theorem looks like in the context of Legen-
drian knots:

T M(O\;A,""\

we M(b5 A, 4)

Glu,u', p) € M(o; A+h, o{c)

A corollary of the gluing theorem is that the differential defined above squares to zero.
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Remark. I've been ignoring gradings entirely, but if they’re defined, one can show that
the differential has degree —1.

Theorem 3.6. Legendrian contact homology is an invariant of Legendrian isotopy.

4. PROVING THE CLASSICAL INVARIANTS AREN’T ENOUGH

Chekanov showed that the following Legendrian knots have distinct Legendrian contact
homologies:

L L.

({Ll.) = ((L’l) =0
‘HD(LD= 'H"{Lz] = |

However, from the Lagrangian projection we can compute the classical invariants: r(L;) = 0
and tb(L;) = 1. Moreover, both knots are clearly smoothly isotopic since they only differ
by two type 1 Reidemeister moves in the bottom right.

Since these two knots have different Legendrian contact homologies, it follows that the
classical invariants are not “sufficient”; they do not determine Legendrian knots up to
Legendrian isotopy.

This can be upgraded to higher dimensions.

Theorem 4.1. For any n > 1, there are infinitely many non-Legendrian isotopic Legen-
drian embeddings of the n-sphere in R?" 1 despite having the same classical invariants.

Theorem 4.2. For n > 1, there are infinitely many non-Legendrian isotopic Legendrian
embeddings of n-tori in R?"T1,

Moreover, for any IV > 0, there exist Legendrian isotopy classes of spheres and tori with
fixed classical invariants with no representative whose Lagrangian projection has at most
N double points. All of these last few results are due to Ekholm, Etnyre, and Sullivan.
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