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Abstract
The Klein quartic is realised as a crochet model, with colours further encoding the Fano plane. The latter can be
encoded in such a way that its symmetries are exactly those of the Klein quartic. This can be used to recover an
exceptional isomorphism between the projective special linear groups of degree 2 over the field of 7 elements and
degree 3 over the field of 2 elements.

Introduction

The projective special linear group of degree = over the field of @ elements, denoted PSL(=, @), consists of
certain = × = matrices whose entries are integers from 0 to @ − 1. For example, PSL(2, 7) consists of certain
2 × 2 matrices with entries from 0 to 6. On the other hand PSL(3, 2) consists of 3 × 3 matrices. There is no
reason to expect the two groups to be related, but they are in fact isomorphic. A formal discussion of these
groups and the isomorphism is provided in Wilson [5].

Such “Accidental isomorphisms”, referred to as excep-
tional isomorphisms, can be difficult to visualise since they
do not follow any general patterns. In this case however,
PSL(2, 7) is the automorphism group (group of symmetries)
of the Klein quartic, and PSL(3, 2) is the automorphism group
of the Fano plane. To understand the isomorphism geometri-
cally, a model was crocheted in which the symmetries of the
Klein quartic and Fano plane were captured simultaneously.
The Klein quartic and Fano plane are introduced in the next
section, with a description of how the latter is encoded in
the former. Next, the crocheted model is used to show that
the symmetries of the Klein quartic and encoded Fano plane
agree. An isomorphism PSL(2, 7) → PSL(3, 2) is also de-
scribed using the crocheted model. Finally a description of
how the model was crocheted is provided.
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Figure 1: The Klein quartic as a quotient
of the hyperbolic plane.

The Klein Quartic and Fano Plane

The Klein quartic can be described as a quotient of the {3, 7} triangular tiling of the hyperbolic plane [1], as
shown in Figure 1. Specifically the Klein quartic can be obtained by considering the coloured triangles in
the tiling and gluing the outer edges together, viz. A to A, B to B, and so on cyclically. The crocheted model
follows this description; 56 triangles were crocheted and stitched together along their edges as in Figure 1.

In the introduction PSL(2, 7) is stated as being the automorphism group of the Klein quartic. To show
this, one can use the group presentation

PSL(2, 7) � 〈0, 1 | 02 = 13 = (01)7 = (0−11−101)4 = 1〉
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Figure 2: The Klein quartic with colours
encoding the Fano plane.
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Figure 3: The standard representation of the
Fano plane as a graph.

according toCoxeter [2]. The generators 0 and 1 can be identifiedwithmatrices
( 0 −1

1 0
)
and

( 0 −1
1 1

)
respectively

[3]. There is no canonical action of PSL(2, 7) on the Klein quartic, but as a specific example 0 can be chosen
to be the c-rotation of the quartic about the edge between x and y in Figure 1 and 1 to be the clockwise
2c/3-rotation about x. The two additional relations in the presentation are satisfied because 01 corresponds
to the 2c/7-counter-clockwise rotation about the center of Figure 1 and 0−11−101 corresponds to a translation
by two triangles across the shaded band. Therefore, the former has order 7 and the latter order 4. The actions
of 0 and 1 can be shown to generate all of the automorphisms of the Klein quartic.

Next the Fano plane is introduced. This is encoded in the Klein quartic using colours following a similar
scheme to that in Baez [1]. The Fano plane is defined as the projectivisation (space of lines through the origin)
of the finite 3-dimensional vector space F2

3 [1]. Figure 3 shows the standard representation of the Fano plane
as a graph in which each vertex is a point in the plane, each edge signifying that the three incident vertices
are collinear. An automorphism of the Fano plane is a permutation of the vertices in which collinearity is
preserved. In Figure 3, vertices have been labelled R, O, Y, G, B, V, P, each of which represents a colour: red,
orange, yellow, green, blue, violet, or pink. Similarly, edges are coloured r, o, y, g, b, v, p. In Figure 2, each
triangle has been given two colours, a triangle (background) colour and circle (foreground) colour. These are
also labelled: R, . . ., P (backgrounds) and r, . . ., p (foregrounds).

A given point in the Fano plane (Figure 3) corresponds to the eight triangles in the Klein quartic
(Figure 2) with the same background colour. Similarly, edges of the Fano plane correspond to the eight
triangles in the Klein quartic with the same foreground colour. In the Klein quartic, a vertex (background
colour) of the Fano plane is incident to an edge (foreground colour) if they never appear on the same triangle.
The agreement of incidence relations with those in Figure 3 can be verified.

The automorphism group of the Fano plane, PSL(3, 2), consists of 3× 3 matrices. Therefore an explicit
action of PSL(3, 2) is given by matrix multiplication upon relabelling the points of the Fano plane to be
vectors in F2

3:

R = (0, 0, 1), O = (0, 1, 0), G = (0, 1, 1), Y = (1, 0, 0), P = (1, 0, 1), B = (1, 1, 0), V = (1, 1, 1).

The resultant labelling satisfies the collinearity relations in Figure 3.
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Figure 4: Order 2 symmetries: rotating (a) or (b) by c preserves the tiling, and turning (a) upside down
gives (b). Order 3 symmetries: rotating (c) or (d) by 2c/3 preserves the tiling, and turning (c)

through an axis in the plane of the paper by 2c/3 gives (d).

Symmetries of the Crochet

The crocheted model shown in Figure 4 uses the same colours and tiling as in Figure 2, with boundaries
stitched together as in Figure 1. Use of the crochetedmodel to recover an isomorphismPSL(2, 7) → PSL(3, 2)
requires the symmetries of the tiling (Klein quartic) to agree with the symmetries of the colours (Fano plane).
This is best seen by handling the crocheted model. For example, consider Figure 4b. Rotating the figure
by c is an order 2 symmetry of the underlying Klein quartic, as it preserves the tiling. On the other hand,
the rotation interchanges O and P (Fano plane vertices) with Y and G, respectively, and o and g (Fano plane
edges) with v and y, respectively. With reference to Figure 3, the permutation of vertices and edges preserves
collinearity, so it defines an automorphism of the Fano plane. This demonstrates that the above rotation is
simultaneously an automorphism of the Klein quartic and Fano plane. With the crochet in hand, one can
verify that all symmetries are simultaneously automorphisms of the Klein quartic and Fano plane.

Matsumoto [4] demonstrated 24 of the 168 symmetries of the Klein quartic with a quilted model which
used the heptagonal {7, 3}-tiling. This is dual to the tiling used in the crochet model; switching every face in
the crochet with a vertex and vice versa produces Matsumoto’s tiling. The reader is encouraged to determine
which symmetries in Matsumoto [4] are shown in Figure 4.



Like Matsumoto’s quilt, the crocheted Klein quartic realised only 24 symmetries. This introduces a
difficulty in describing an isomorphism PSL(2, 7) → PSL(3, 2), because not all of the matrices in these
groups give symmetries of the crocheted model—some require the model to pass through itself. The missing
symmetries correspond to 2c/7-rotations about vertices of the tiling and their compositions with other
symmetries. Fortunately in this case, the permutation of colours and hence the corresponding symmetry of
the Fano plane can be easily determined by inspecting the seven triangles adjacent to the centre of the rotation.
For example, choosing the vertex at the center of Figure 2 and rotating counterclockwise by 2c/7 sends red
to orange, orange to yellow, and so on (for both background and foreground colours). This completes the
correspondence between symmetries of the Klein quartic and Fano plane.

The Isomorphism PSL(2,7)→ PSL(3,2)

An isomorphism from PSL(2, 7) to PSL(3, 2) has been established in the previous two sections. As an
example, the image of an element of PSL(2, 7) under the isomorphism is now computed. A c-rotation in
Figure 4b corresponds to a rotation about the edge between $ and . in Figure 2. In terms of Coxeter’s
generators of PSL(2, 7), this rotation is given by 012010, the corresponding matrix being

( 1 −1
2 −1

)
. On the

other hand, this symmetry of the Klein quartic crochet has been shown to correspond to the automorphism of
the Fano plane interchanging O and P with Y and G, respectively. Using the relabelling of vertices as vectors,
the automorphism is given by

( 0 1 0
1 0 0
0 0 1

)
. Therefore, the isomorphism maps the former matrix to the latter.

How was the model Crocheted?

Eight equilateral triangles were crocheted for each of seven colours. These used single-crochet stitches as
they are the closest to being square. Starting with one stitch and adding an extra stitch at the start of each
successive row produces an equilateral triangle. Next, the triangles were stitched together using black yarn
into a large sheet as in Figure 1. Finally, the edges of the sheet were wrapped around and stitched together
following the cyclic rule from Figure 1. Overall the model took about 50 hours to crochet. The main difficulty
was the final step because the model required folding over itself many times and the yarn was very thick!

Conclusions and Further Crafts

The crocheted model has indeed proved useful in reconstructing an exceptional isomorphism PSL(2, 7) �
PSL(3, 2), by exhibiting the relationship between automorphisms of the Klein quartic and those of the Fano
plane. There are many other exceptional isomorphisms of finite groups, such as PSL(2, 4) � PSL(2, 5) and
PSL(2, 3) � �4. Further studies are encouraged to crochet geometric objects that exhibit these isomorphisms!
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