LEGENDRIAN KNOTS AND MONOPOLES II

SHINTARO FUSHIDA-HARDY

ABSTRACT. We give a proof outline of Mrowka and Rollin’s general slice-Bennequin in-
equality. Specifically, this uses a version of Seiberg-Witten theory for 4-manifolds with
contact boundary. They prove an excision result in this framework to extend the adjunc-
tion inequality to surfaces with boundary.

1. THE ADJUNCTION INEQUALITY

The general form of the slice-Bennequin inequality that we’ll be proving makes use of the
adjunction inequality. The statement of the slice-Bennequin inequality is also very similar
to the adjunction inequality (but only more complicated), so we’ll begin by introducing
the adjunction inequality.

Theorem 1.1. Let M be a 4-manifold and s € Spin®(M) such that SWy(s) is non-zero.
Then any closed surface ¥ C M with [X] # 0 and [X]? > 0 satisfies

—X(2) > [Z] + |ea(s) - [Z]].
We’ll run through a bullet list to make sure the theorem makes sense:

e Given a manifold M, spin® structures are like “lifts” of oriented orthonormal frame
bundles of M. Specifically, the SO(n) structure is upgraded to a Spin®(n) structure.
Since this is a bundle, it has characteristic classes - we have a map

C1:86+— 01(5) € H2(M;Z).

e Given a spin® structure s, we can consider certain differential equations on M. The
signed count of solutions to the equations is STWj(s).

e Both terms on the right side of the equation are integer valued, so we can make
sense of the inequality (which provides a lower bound on the genus of X).

The adjunction inequality can also be stated for manifolds with boundary - but there are
a couple of things we must be careful about:

e When the base manifold M has boundary, rather than considering Spin®(M), we
want some notion of relative spin® structures.

e Farlier we define the Seiberg-Witten invariant for ordinary spin® structures, but
we’ll need to extend it to relative spin® structures.

What exactly are our relative spin® structures going to be?

Typically the reason we need relative versions of mathematical objects over manifolds
with boundary is because “the differences above the boundary get lost” unless we explicitly
keep track of boundary conditions. Relative spin¢ structures are the same.
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e Let M be a 4-manifold with boundary, and Y = dM a contact manifold (with
contact form ). Then (Y, §) has a canonical spin® structure s¢. This is because in
3-dimensions spin¢ structures correspond to Hermitian bundles of rank 2, and the
contact distribution determines such a bundle.

e The space of relative spin® structures, Spin®(M, &), consists of pairs

(s,h)

where s is a spin® structure over M, and h is an isomorphism h : 5|y — S¢.
e The main idea is that carrying the data of h refines what s is doing over the
boundary.

We can now state the adjunction inequality for closed surfaces in 4-manifolds with contact
boundary:

Theorem 1.2. Let M be a 4-manifold with contact boundary (Y, €), and (s, h) € Spin®(M, €)
such that SWyz (s, h) # 0. Then any closed surface ¥ with g(¥) > 1 and [¥]2 = 0 satisfies

—X(2) = [ei(s) - [X]]-

To really understand this theorem, we should know that the relative version of Seiberg-
Witten invariants are. Unfortunately I missed some earlier talks this quarter, but my
understanding is that these have already been defined: essentially

SW : Spin®(M, &) — Z

is a count of solutions to differential equations over M with some boundary conditions.
We’ll make use of this version of the adjunction inequality to prove the slice-Bennequin
inequality.

2. THE SLICE-BENNEQUIN INEQUALITY

The slice Bennequin inequality is essentially a version of the adjunction inequality for
surfaces with boundary. The statement is very similar, but the homological invariants in
the inequality must be made relative in some way.

Theorem 2.1. Let M be a 4-manifold with contact boundary (Y, €), and (s, h) € Spin®(M, €)
such that SWM@(S, h) # 0. Let ¥ C M be a surface with boundary a Legendrian knot
K CY. Then

—X(¥) Z th(K;, [%]) + [rot(K, [X], (s, h))|.

e The Thurston Bennequin invariant tb(K, [X]) is analogous to the term [¥]? in the
adjunction inequality. It’s defined to be the linking number of the relative homology
class [X] € Hy(M,Y;Z) with itself, given the boundary knot K is pushed off
transversely to the contact distribution in Y. (In the 4-ball case, which is the
traditional setting for defining the Thurston Bennequin invariant, the invariant is
independent of the surface bound by the knot - we can write tb(K'). In the general
case this is no-longer true.)
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e The rotation invariant rot(K, [¥], (s, h)) is analogous to the term c¢i(s) - [X] in the
adjunction inequality. It’s defined to be the pairing

c1(Ls,v) - [X]

where L, is the determinant line bundle of s. ¢1(Ls, v) is a relative first Chern class,
where the boundary condition v is a non-vanishing tangent vector field to K. To
interpret this as a section of Lg, we use the isomorphism h between s|y and s¢. (In
the 4-ball case, the invariant again doesn’t depend on the choice of surface >, and
we can write rot(K).)

3. A BRIEF PROOF OUTLINE

e Gluing: Let (M,Y,¢) and (M, Y, ¢') be 4-manifolds with contact boundary. More-

over, suppose M = MUZ where Z is a special cobordism from Y to Y’. Then
there’s a canonical map

j : Spin°(M, &) — Spinc(M,,ﬁ'),
and

SWM,& Oj = iSWM/ ¢

e Consider a surface ¥ in M, where ¥ has boundary a Legendrian knot in Y = M.
We glue a special cobordism Z to M, together with a surface F in Z.

e The result is a closed surface ¥’ in a 4-manifold with boundary M'. We relate
the homological invariants of the closed surface ¥’ to the Thurston Bennequin and
rotation invariants of .

e Since the Seiberg-Witten invariants of M are non-zero if and only if the correspond-
ing invariants are non-zero in M/, the slice Bennequin inequality follows from the
adjunction inequality for closed surfaces in 4-manifolds with boundary.

4. GLUING

We now describe the gluing result in a little more detail. To begin with, what exactly
are we gluing?

Definition 4.1. A special symplectic cobordism is a symplectic cobordism with some ad-
ditional geometric and homological constraints. Specifically:

(1) (Z,w) is a symplectic cobordism if it has boundary —Y U Y’ where (Y,¢) and
(Y’ ¢') are contact manifolds, weakly concave and convex respectively. (That is, w
is strictly positive on & and &'.)

(2) A special symplectic cobordism additonally requires that the concave boundary is
strongly concave. That is, a (collar) neighbourhood of the boundary is given by the
symplectisation of the contact structure. (That is, it looks like Y x (0, c0), where
the symplectic form is given by w = d(t£).)
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(3) A special symplectic cobordism also requires a cohomological triviality condition:
it HYZ,Y') — HY(Y)

must be the zero map. This is essentially saying that any homological aspects of
Y are not detected in Z.

Symplectic cobordisms have a key property that we’ll be using: they have canonical
Spin® structures.

e A result by Gompf (which I haven’t read) implies that for 4-manifolds with bound-
ary, there’s a canonical bijective correspondence between homotopy classes of al-
most complex structures and spin® structures.

e Moreover, there are isomorphisms, unique up to homotopy, between s, |y and s,
and between s, |y’ and sg .

Now consider the spaces (M, ¢) and (M U Z,¢"). Let (s, h) be in Spin®(M, ¢). We can glue
s to s, via the isomorphisms
h
sly = s¢ = suly-

This gives a new spin® structure
(s',h') € Spin®(M, ¢').
In summary, we have a gluing map
§ : Spin™(M, &) — Spinc(M,,§’).
Let’s recall the gluing theorem:

Theorem 4.2. Given (M,Y,€) and a special symplectic cobordism (Z,Y,Y"), the Seiberg
Witten invariants for M =MUZ are given by

SWygeod = +SWyp .

Here j is the canonical map between the respective spin® structures of M and M.

Proof. The proof is hard! It’s about 50 pages, and I honestly didn’t read it. I did however
try to extract why we need the additional properties of special symplectic cobordisms,
rather than just symplectic cobordisms.

The main idea is that they work at the level of equations and moduli spaces. Most of
the work is in establishing a map between the moduli spaces of solutions to the Seiberg
Witten equations on M and M.

(1) The homological condition of special symplectic cobordisms serves only to simplify
some algebra, and doesn’t have analytic consequences. Specifically, even without
the homological condition, a similar consequence to the above theorem holds:

Y. SWyels,h) = £SWyp (s, ).
(s,h)€j~1( 1)
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(2) The fact that the concave end of the cobordism is given by the symplectisation of
the contact boundary is used on page 64 of Mrowka-Rollin. It appears to allow
very explicit computations (where they genuinely express the symplectic form in
terms of the contact structure) to deduce that the moduli spaces of solutions to the
Seiberg-Witten equations are diffeomorphic.

g

5. FROM ADJUNCTION TO SLICE BENNEQUIN

The main (so-far unmentioned) result we’ll use to derive the slice Bennequin inequality
from the Adjunction inequality is Weinstein surgery.

Theorem 5.1. (This is slightly informal), but a specific case of Weinstein surgery is gluing
2-handles along Legendrian knots in the contact boundaries of 4-manifolds. The handles
themselves are guaranteed to be special symplectic cobordisms.

We also recall the version of the adjunction inequality that we’ll use:

Theorem 5.2. Let (M,Y,€) be a 4-manifold with contact boundary, and SWﬂg(s, h) # 0.
Then for any closed surface of positive genus,

—x(%) = [er(s) - X
Finally, we restate the result we’ll prove:

Theorem 5.3. Let (M,Y, &) be a 4-manifold with contact boundary, and suppose (s, h) €
Spin®(M, &) satisfies SWM,§(5’ h) # 0. Then any ¥ bounding a Legendrian knot in Y
satisfies

—x(%) = tb(K, [X]) + | rot(K, [X], (s, h))].

We now give a proof outline!

(1) Given the data of (M, Y, ) and an embedded surface 3 with boundary a Legendrian
knot, do Weinstein surgery along the knot. This produces a new 4-manifold with
boundary (M/, Y’, €) by gluing a special symplectic cobordism. Moreover, the core
of the handle from Weinstein surgery is a disk being glued to ¥, which produces a
closed surface in Y.

(2) Suppose (s,h) € Spin®(M, ) satisfies SWiz ¢(s,h) # 0. By the gluing formula, we
also know that SWy (j(s,h)) #0.

(3) Since X' was obtained from X by gluing a disk, we have

XE)=xE)+1, [EP=th(K,[Z]) -1, (a(i(s)),[X]) = rot(K, [£],5, ).

(4) If [¥'] = 0 and X' has genus at least 1, then the adjunction inequality applies! By
applying the above identities, we can deduce the slice Bennequin inequality.

(5) In general, neither of the above facts are true. We can resolve this by replacing
K = 0% with a new knot, K7. Specifically: let T be a right handed trefoil in the
boundary of B*, and K; = K#T C M{B* The right handed trefoil bounds a
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surface of genus 1 in the 4-ball, so we also replace the surface ¥ with ¥;. Notice
that
9(%1) =g(X) + 1.

We also understand how the classical invariants behave under connected sums: the
rotation invariant is additive, while the Thurston Bennequin invariant is ”additive
plus 1”7. Since the rotation invariant of the right handed trefoil is 0, while the
Thurston Bennequin invariant is 1, with each iterated trefoil-gluing operation, we
have:

e the genus increases by 1

e the Thurston Bennequin invariant increases by 2

e the rotation invariant is unchanged.
Thus iterating the process enough times ensures that eventually the premise of the
adjunction inequality must hold, and so the slice-Bennequin inequality for K, must
hold. Finally, relating each invariant of K, to K shows that the slice-Bennequin
inequality also holds for K.
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