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This document contains results culminating in a proof of Hilbert’s Nullstellensatz. The
notes are mostly self-contained, relying only on basic algebra (integral domains, prime

ideals, modules etc). However, some knowledge of localisations is assumed when
developing some preliminary dimension theory results.
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1 Introduction and outline

Hilbert’s Nullstellensatz is the most fundamental theorem in algebraic geometry, estab-
lishing a rigorous correspondence between geometry and commutative algebra. In this
document we prove Hilbert’s Nullstellensatz assuming only basic definitions from a first
course in ring theory. This is not the shortest route to the Nullstellensatz: the shortest
proof I am familiar with is available on Daniel Allcock’s website. However, I believe the
route taken in these notes are canonical in the sense that the preliminary results focus on
understanding the geometry of algebraic objects, hopefully giving some intuition as to why
a correspondence between geometry (varieties) and algebra (ideals) is expected.

An overall outline of our proof of the Nullstellensatz is as follows:

1. An important idea in commutative algebra is that rings can be extended, and these
extensions can satisfy certain “finiteness” properties (in the sense that the extension
is only “finitely different” from the subobject). We first explore the properties of three
such extensions, namely finite, finite-type, and integral extensions. In particular, we
show that

finite ⇔ integral + finite-type (for ring extensions).

2. The stronger the finiteness property, the more properties are preserved by the ex-
tension. We introduce a notion of dimension, and show that integral extensions are
strong enough to ensure that dimensions are preserved.

3. We wish to use dimension arguments to prove the Nullstellensatz (or more precisely,
Zariski’s lemma). Therefore the next step is to:

(a) show that the dimension of k[x1, . . . , xn] is n,
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(b) show that any integral domain R (which is finite-type over k) is a finite extension
of some k[x1, . . . , xn].

Combining these two facts allows us to determine the dimensions of a general family
of rings, since finite extensions preserve dimension. (b) is an important result on its
own, called the Noether normalisation lemma. Both of the above facts are closely
related, and follow from the tilting of axes lemma which is really a geometric result.

4. In particular, using these two facts above, we can prove Zariski’s lemma:

finite ⇔ finite-type (for field extensions).

This on its own is sometimes referred to as the weak Nullstellensatz, as the usual
form of the weak Nullstellensatz follows almost immediately.

5. Finally we prove the general form of the Nullstellensatz from the weak form, using
the Rabinowitsch trick.

2 Dimension theory

2.1 Integral, finite, and finite-type maps.

Recall from the introduction that our first local goal is to understand various notions for
extensions of rings to be “finite”.

Definition 2.1. A ring S is said to be finite over R if it is finitely generated as a module
over R. That is, there is a ring homomorphism f : R→ S (allowing S to be viewed as an
R-module), and an R-linear surjection Rn → S for some n. S is a finite extension of R if
f is injective.

Definition 2.2. A ring S is said to be finite-type over R if it is finitely generated as an
algebra over R. That is, there is a ring homomorphism f : R → S (allowing S to be
viewed as an R-module), and a surjective R-linear ring homomorphism R[x1, . . . , xn]→ S.
Equivalently, S is isomorphic to a quotient of R[x1, . . . , xn] as an R-algebra.

Definition 2.3. Let f : R → S be a ring homomorphism. An element s ∈ S is integral
over R if it is the root of a monic polynomial in f(R)[X]. S is integral over R if every
element of S is integral over R, in which case f is said to be an integral homomorphism.
If f is injective, it is an integral extension.

We later see that integral extensions preserve dimension, which is crucial in the devel-
opment of our theory. It is not immediately clear that the above notions are related, but
a characterisation of integrality in terms of submodule gives the following characterisation
of finite morphisms:
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Proposition 2.4. A ring is finite over R if and only if it is integral and finite-type over R.

This result depends on the following lemma:

Lemma 2.5. Let f : R → S be a ring homomorphism. s ∈ S is integral over R if and
only if it is contained in an R-subalgebra that is finite over R.

Proof. (⇒) Suppose s ∈ S is integral over R. Then there is a monic polynomial p with
coefficients in R with s as a root. The R-module generated by 1, s, . . . , sdeg p−1 is then
closed under multiplication (since sdeg p can be expressed in terms of lower powers using
p). Therefore this finitely generated R-submodule is in fact an R-subalgebra.

(⇐) We employ the well-known trick used to prove Nakayama’s lemma. Suppose s
is contained in an R-algebra A which is finite over R. Let a1, . . . , an ∈ A generate A as
an R-module. Since A is closed under multiplication, there exists cij in f(R) such that
sai =

∑
cijaj for each i. Let M denote the matrix representing s in the basis {ai}. Then

(sI −M)(a1, . . . , an) = 0,

so in particular

χM (s)(a1, . . . , an) = det(sI −M)(a1, . . . , an) = adj(sI −M)(sI −M)(a1, . . . , an) = 0.

This shows that χM (s) annihilates A, so in particular it kills 1. This shows that s is a root
of χM , which is a monic polynomial with coefficients in f(R). Therefore s is integral over
R.

We are now ready to prove the following proposition:

Proposition 2.6. Let f : R→ S be a ring homomorphism. Then S is finite over R if and
only if S is integral and finite-type over R.

Proof. (⇒) Suppose S is finite over R. S is then a finite R-subalgebra of itself, so S is
integral over R by lemma 2.5. Next it is immediate that S is finite-type over R, since a
finite set generating S as a module also generates S as an algebra.

(⇐) Suppose S is integral and finite-type over R. Let s1, . . . , sn ∈ S generate S as
an R-algebra. Since they are integral, consider the R-submodule of S generated by {sjii },
where the ji vary between 1 and deg si − 1. This is an R-algebra which is finite over R,
and contains each si, so it contains S. Therefore by lemma 2.5 S is finite over R.

Proposition 2.7. Suppose f : R → S is an integral homomorphism. Then integrality is
preserved by localisations of R and quotients of S. Precisely,

1. If D ⊂ R is multiplicative, the induced map f : D−1R → f(D)−1S is an integral
homomorphism. (In fact, if f : R→ S is an integral extension, so is the induced map
on localisations).
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2. If I ⊂ S is an ideal, the induced map f : R/f−1(I) → S/I is an integral homomor-
phism.

Proof. 1. Let s/f(d) ∈ f(D)−1S. Choose a monic polynomial p with coefficients in R such
that s is a root of p. Explicitly, there exists ri ∈ R such that

p(X) = Xn + r1X
n−1 + · · ·+ rn.

Replacing each coefficient ri with ri/d
i ∈ D−1R gives a monic polynomial with coefficients

in D−1R which has s/f(d) as a root.
Now suppose moreover that f : R→ S is an extension, i.e. injective. Suppose f(r/d) =

f(r)/f(d) = 0. Then f(d′)f(r) = 0 for some d′ ∈ D. This requires d′r = 0, so r/d is zero
in D−1R. Therefore the induced map on localisations is also injective, hence an integral
extension.

2. Let s = s + I ∈ S/I. Choose a monic polynomial p with coefficients in R such
that s is a root of p. The reduction of the coefficients of p modulo f−1(I) gives a monic
polynomial with s as a root.

2.2 The lying over and going up theorems

In the previous subsection we defined some notions for comparing rings. We now develop
some results allowing us to compare the dimensions of rings. In particular, we show that
dimension is preserved by integral extensions.

Definition 2.8. Let R be a ring. The dimension of R is the supremum of lengths of
ascending chains of prime ideals P0 ⊂ P2 ⊂ · · · ⊂ Pn of R. Note that each Pi must be
properly contained in Pi+1, and the length of the chain P0 ⊂ P2 ⊂ · · · ⊂ Pn is n.

Theorem 2.9 (Lying over theorem). Let f : R → S be an integral extension of rings. A
prime ideal Q of S is said to lie over a prime P in R if P = f−1(Q).

1. If R and S are integral domains, R is a field if and only if S is a field.

2. A prime QC S is maximal if and only if f−1(S) is maximal.

3. The primes of S lying over a prime of R have no non-trivial inclusions. That is, if
P CR is prime, and Q1 ⊂ Q2 C S are primes lying over P , then Q1 = Q2.

4. Every prime of R has a prime lying over it.

Note that the proofs of (3) and (4) use the machinery of localisations.

Proof. 1. Suppose R is a field. Let s ∈ S be non-zero. There is a monic polynomial
f ∈ R[x] such that f(s) = 0. Explicitly, for some ri, we have

sn + rn−1s
n−1 + · · ·+ r0 = 0.

4



Without loss of generality, r0 6= 0. (If it were, the relation sn−1 + · · ·+ r1 = 0 would hold.
At least one ri must be non-zero, since s is non-zero and S is a domain.) But now since R
is a field,

s(−sn−1/r0 − · · · − r1/r0) = 1,

so s is a unit. Therefore S is a field.
Conversely, suppose S is a field. Let r ∈ R be non-zero. Then s = f(r)−1 ∈ S. Since

S is integral over R, for some ri, we have

sn + rn−1s
n−1 + · · ·+ r0 = f(r)−n + rn−1f(r)1−n + · · ·+ r0 = 0.

Multiplying through by f(r)n gives

1 = f(r)(−rn−1 − · · · − r0f(r)n−1).

Therefore −rn−1 − rn−2r − · · · − r0rn−1 ∈ R is the inverse of r, showing that R is a field
as required.

2. Suppose Q ⊂ S is a prime ideal. Then f−1(Q) is a prime ideal. The induced map
R/f−1(Q) → S/Q is an integral extension between domains. Therefore by 1, f−1(Q) is
maximal if and only if Q is maximal.

3. Let P ⊂ R be prime, and suppose Q1 ⊂ Q2 ⊂ S are primes such that f−1(Q1) =
f−1(Q2) = P . There is an induced integral extension RP → Sf(P ) by proposition 2.7.
Each Qi is disjoint from f(R \ P ), and hence descends to a prime ideal in Sf(P ). This is
necessarily maximal by 2 since P is maximal in RP . In particular, since Q1 ⊂ Q2, each Qi

descends to the same maximal ideal Q1f(P ) = Q2f(P ). Since prime ideals of Sf(P ) are in
bijective correspondence with prime ideals of S that are disjoint from f(R \ P ), Q1 = Q2.

4. This is similar to the previous proof. Let P ⊂ R be prime, and consider the induced
integral extension RP → Sf(P ) by 2.7. Let Qf(P ) be a maximal ideal in Sf(P ). By 2, the
preimage of Qf(P ) is maximal in RP , so it is necessarily PP . Qf(P ) lifts to a prime ideal Q
in S, and PP lifts to P ⊂ R.

To see that Q is lying over P , observe that R → RP → Sf(P ) and R → S → Sf(P )

commute, so the preimages along either composition are equal. The first gives P and the
second gives f−1(Q).

Theorem 2.10 (Going up theorem). If f : R → S is an integral homomorphism, P1 ⊂
· · · ⊂ Pn is a chain of primes in R, and Q1 ⊂ · · · ⊂ Qm is a chain of primes lying over Pi

with m < n, then Qi can be extended to Q1 ⊂ · · · ⊂ Qn, with each Qi lying over Pi.

Proof. By induction, it suffices to consider the case where P1 ⊂ P2 ⊂ R are prime, and
Q1 ⊂ S is a prime lying over P1. Since Q1 is lying over P1, f descends to an integral
extension R/P1 → S/Q1 by proposition 2.7, so the lying over theorem applies. That is,
there exists Q2 prime in S/Q1 lying over the prime P 2 in R/P1. This lifts to a unique
prime Q2 in S.
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To see that Q2 is lying over P2, observe that R→ R/P1 → S/Q1 and R→ S → S/Q1

commute, so the preimages along either composition are equal. The first gives P2 and the
second gives f−1(Q2).

Proposition 2.11. Integral extensions preserve dimensions. That is, if R ⊂ S is an
integral extension of rings, then dimR = dimS.

Proof. Suppose R→ S is an integral extension. Let P0 C · · ·C Pn be a strictly increasing
chain of prime ideals in R. By the lying over theorem, there is a prime Q0 lying over
P0, and now by the going up theorem, there is a strictly increasing chain of prime ideals
Q0 C · · ·CQn in S. This shows that dimS ≥ dimR.

Conversely, suppose Q0 C · · · C Qn is a strictly increasing chain of prime ideals in S.
Then there is an increasing chain of prime ideals f−1(Q0) C · · · C f−1(Qn) in R. In fact,
this chain is also strictly increasing, since in part 3 of the lying over theorem we showed
that primes lying over a given prime in R have no non-trivial inclusions.

2.3 The tilting of axes lemma

Suppose f is an irreducible polynomial in k[x1, . . . , xn][xn+1]. Then it is not true in general
that the inclusion

k[x1, . . . , xn]→ k[x1, . . . , xn][xn+1]

(f)

is finite. For example, consider f(y) = xy−1 as a polynomial in C[x][y]. However, finiteness
is recovered if we perturb the basis, or “tilt the axes”. In this example it corresponds to
the observation that C[w] → C[w][z]/(g) is a finite extension, where g(z) = w2 − z2 + 1.
Observe that g is really the same polynomial as f but with a tilted set of axes.

Proposition 2.12 (Tilting of axes lemma). Let k be a field, and let f ∈ B = k[x1, . . . , xn]
be non-constant. Then there exists a new set of coordinates x′1 . . . x

′
n−1 ∈ B such that

f, x′1, . . . , x
′
n−1 are algebraically independent, and such thatB is finite over k[f, x′1, . . . , x

′
n−1].

In particular, B/(f) is finite over k[x′1, . . . , x
′
n−1].

Proof. Let k be a field, and let f ∈ B = k[x1, . . . , xn] be non-constant. We prove that there
exists a new set of coordinates x′1 . . . x

′
n−1 ∈ B such that f, x′2, . . . , x

′
n are algebraically

independent, and such that B is integral over k[f, x′2, . . . , x
′
n]. Since integral finite-type

extensions are finite by proposition 2.6, the first result will follow. (Note that the second
result is then immediate.)

Let f =
∑
ai1...inx

i1
1 · · ·xinn denote an element of B. For each monomial in f , there is

a corresponding polynomial pj(t) = i1 + i2t+ · · · intn−1 ∈ Z[t]. For each distinct pair k, j,
let qkj(t) = pk(t)− pj(t). Then there are finitely many polymonials qkj , each of which has
finitely many roots. Since the integers are infinite, there exists d ∈ Z such that qkj(d) 6= 0
for any qkj . That is, every pj(d) is distinct.
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Now define x′i = xi − xd
i−1

1 for 2 ≤ i ≤ n. Then

f(x1, x
′
2 + xd1, . . . , x

′
n + xd

n−1

1 ) = f(x1, . . . , xn) = f.

Expanding the expression on the left gives

f(x1, x
′
2 + xd1, . . . , x

′
n + xd

n−1

1 ) =
∑

ai1···inx
i1+···+indn−1

1 + g(x1, x
′
2, . . . , x

′
n),

where g has degree strictly less than the first term. This is because every coefficient in
the expression in the sum is distinct by the choice of d, so no two terms in the sum have
the same multi-degree, meaning each non-zero ai1···in contributes a distinct non-zero term
in the last expression. (This means the characteristic of k is irrelevant.) Viewing f(x1)
as a polynomial in k[x′2, . . . , x

′
n][x1], it follows that αf(x1) is monic for an appropriate

α 6= 0 in k. But now αf(x1) − αf = 0 is an integral relation showing that x1 is integral
over k[f, x′2, . . . , x

′
n]. Since k[x1, x

′
2, . . . , x

′
n] = k[x1, . . . , xn], it follows that k[x1, . . . , xn] is

integral over k[f, x′2, . . . , x
′
n] as required.

2.4 The dimension of k[x1, . . . , xn]

We are now ready to prove that k[x1, . . . , xn] has dimension n. This is a proof by induction,
using the tilting of axes lemma and the result that integral extensions preserve dimension
(proposition 2.11).

Theorem 2.13. The dimension of k[x1, . . . , xn] is n.

Proof. It’s clear that dim k[x1, . . . , xn] ≥ n by considering the chain of prime ideas

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn).

Therefore we proceed by induction on n to show that dim k[x1, . . . , xn] ≤ n. The base
case is trivial, since k is a field. Now fix m, and suppose dim k[x1, . . . , xm] = m. Suppose
for a contradiction that dim k[x1, . . . , xm+1] > m + 1, and let P0 ⊂ · · · ⊂ Ps be a strictly
increasing chain of prime ideals in k[x1, . . . , xm+1] with s > m + 1. Assume without loss
of generality that P0 = 0. Choose any non-zero element of P1, and decompose it into
irreducible factors. Since P1 is prime, at least one of these factors f lies in P1, so now
consider the strictly increasing chain of primes

0 ⊂ (f) ⊂ · · · ⊂ Ps.

Since f has degree at least 1, the tilting of axes lemma applies: there exists x′1, . . . , x
′
m

algebraically independent such that there is a finite (and hence integral) extension

k[x′1, . . . , x
′
m]→ k[x1, . . . , xm+1]

(f)
.

By the proposition that integral extensions preserve dimension and the inductive hypoth-
esis, the right side has dimension m. But this is a contradiction, since the chain of primes
(f) ⊂ · · · ⊂ Ps descends to a strictly increasing chain of prime ideals in k[x1,...,xm][xm+1]

(f) , of

length s > m+ 1. Therefore dim k[x1, . . . , xn] ≤ n for any n, as required.
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3 Various forms of the Nullstellensatz

3.1 Noether normalisation and Zariski’s lemma

We are almost ready to prove the Nullstellensatz. In the previous section we showed that
every integral finite-type ring homomorphism is finite. In the case of field extensions, it
turns out that finite-type is equivalent to finite without even requiring integrality! This is
Zariski’s lemma, which is often simply referred to as Hilbert’s weak Nullstellensatz.

To prove Zariski’s lemma, we use the Noether normalisation lemma (which is another
corollary of the tilting of axes lemma), and the fact that dim k[x1, . . . , xn] = n.

Theorem 3.1 (Noether normalisation lemma). Let R be an integral domain, finite-type
over a field k. Let d = trdeg(K(R)/k). (Here K(R) denotes the field of fractions of k.)
Then there exists x1, . . . , xd algebraically independent in R such that k[x1, . . . , xd] → R is
a finite extension.

Before proceeding with the proof, we describe the transcendence degree of a field exten-
sion. Let K/k be a field extension, i.e. suppose there is a ring homomorphism f : k → K.
Then the transcendence degree of K is the supremum of cardinalities of algebraically in-
dependent subsets of K over k. In particular, the transcendence degree of k(a1, . . . , an) is
at most n, and equal to n if and only if the ai are algebraically independent over k.

Proof of Noether normalisation. Since R is finite-type over k, write R = k[s1, . . . , sn],
where the si are not necessarily algebraically independent. Then d = trdeg(K(R)/k) ≤ n.
We proceed by induction on n. If d = n, the result is immediate, since the si must be
algebraically independent.

For the inductive step, suppose d < n, and suppose the result is true for all integral
domains over k with generating sets of size less than n. For some prime ideal P , R =
k[y1, . . . , yn]/P . We use the tilting of axes lemma to express R as an integral extension
of some k[z1, . . . , zn−1]/Q, which is automatically finite over some k[x1, . . . , xd] by the
inductive hypothesis.

Let f be any non-constant polynomial in P (which exists since the s1, . . . , sn are alge-
braically dependent). By the tilting of axes lemma, there exists z1, . . . , zn−1 ∈ k[y1, . . . , yn] =
k[y] such that f, zi are algebraically independent, and k[y]/(f) is finite over k[z1, . . . , zn−1] =
k[z]. In particular k[y]/P is finite over k[z]. The kernel of the map k[z] → k[y]/P is a
prime ideal Q, so there is a finite extension k[z]/Q → k[y]/P . Since k[z]/Q is finite over
k[x1, . . . , xd] by the inductive hypothesis, by transitivity it follows that k[y1, . . . , yn]/P is
finite over k[x1, . . . , xd] as required.

Theorem 3.2 (Zariski’s lemma). Suppose K is a field extension of k. If K is finite-type
over k, then K is finite over k.

Proof. Let K be a finite-type field extension of k. Then by the Noether normalisation
lemma there exists x1, . . . , xd ∈ K such that k[x1, . . . , xd] → K is a finite extension, and
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x1, . . . , xd are algebraically independent. If we can show that d = 0, (equivalently, if we
show that K is algebraic over k), it follows that k → K is finite (which is Zariski’s lemma).

To see this, recall from proposition 2.11 that integral extensions preserve dimensions,
and observe that k[x1, . . . , xd] has dimension d while K has dimension 0. This forces d = 0
as required.

3.2 Hilbert’s weak Nullstellensatz

Hilbert’s weak Nullstellensatz states that maximal ideals in polynomial rings of dimension
n correspond bijectively with points in n-dimensional affine space. Since quotients by
maximal ideals give fields, this translates to a statement about field extensions, and in fact
follows from Zariski’s lemma.

Theorem 3.3 (Hilbert’s weak Nullstellensatz, version 1). Let k be a field, and M ⊂
k[x1, . . . , xn] a maximal ideal. Then k[x1, . . . , xn]/M is a finite field extension of k. In
particular, if k is algebraically closed, k[x1, . . . , xn]/M ∼= k.

Proof. The first part follows immediately from Zariski’s lemma. The canonical map k →
k[x1, . . . , xn]/M is not the zero map, since 1 cannot map into M . Therefore it must be
injective. But k → k[x1, . . . , xn]/M is now a finite-type field extension, so by Zariski’s
lemma, it is a finite field extension.

Next suppose k is algebraically closed. Since every element of k[x1, . . . , xn]/M is alge-
braic over k, it must be isomorphic to k.

Theorem 3.4 (Hilbert’s weak Nullstellensatz, version 2). Let k be an algebraically closed
field. Then the maximal ideals of k[x1, . . . , xn] are exactly of the form (x1−a1, . . . , xn−an),
for ai ∈ k.

Proof. First we observe that ideals of the form (x1 − a1, . . . , xn − an) are indeed maximal,
since the quotients of k[x1, . . . , xn] by such ideals gives k.

Conversely, suppose M ⊂ k[x1, . . . , xn] is maximal. By the first form of the weak
Nullstellensatz, k[x1, . . . , xn]/M ∼= k. Each xi + M maps to some ai ∈ k under this
isomorphism, so xi − ai ∈M . But then (x1 − a1, . . . , xn − an) ⊂M is a maximal ideal, so
they must be equal.

The second form of Hilbert’s wek Nullstellensatz is a very geometric statement, as
the ideal (x1 − a1, . . . , xn − an) consists of all polynomials which vanish at the point
(a1, . . . , an) ∈ kn, so any point in kn gives rise to a maximal ideal by considering the
set of such polynomials.
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3.3 Hilbert’s strong Nullstellensatz

Hilbert’s weak Nullstellensatz also implies what is often referred to as the strong Nullstel-
lensatz, or just the Nullstellensatz. Rather than relating maximal ideals to geometry, this
version of the Nullstellensatz relates all ideals to geometry.

Theorem 3.5 (Hilbert’s strong Nullstellensatz). Let I be an ideal of k[x1, . . . , xn], where k
is algebraically closed. Suppose f ∈ k[x1, . . . , xn] vanishes on the vanishing set of I. Then
there exists m ∈ N such that fm ∈ I.

Proof. This follows from the Rabinowitsch trick. Let I be an ideal in k[x1, . . . , xn], and let
f ∈ k[x1, . . . , xn]. Since I is an ideal in a Noetherian ring, it is generated by g1, . . . , gm.
Suppose f vanishes on the vanishing set of I, which is equivalently the vanishing set of
g. Consider the polynomial ring k[x1, . . . , xn, y], and define f ′ ∈ k[x1, . . . , xn, y] to be
f ′(x1, . . . , y) = 1 − yf(x1, . . . , xn). Then {f ′, g1, . . . , gm} has no common zeroes, since
whenever all of g1, . . . , gm vanishes, f ′ takes the value 1. But by the weak Nullstellensatz,
every maximal ideal vanishes at a point, so (f ′, g1, . . . , gm) generates the unit ideal.

Choose h0, . . . , hm ∈ k[x1, . . . , xn, y] such that

1 = h0f
′ +

∑
higi.

Since f is non-zero in k[x1, . . . , xn, y], 1/f ∈ k(x1, . . . , xn). The evaluation y 7→ 1/f induces
a homomorphism

k[x1, . . . , xn, y]→ k(x1, . . . , xn).

Under this map, the above expression maps to

1 =h0(x1, . . . , xn, 1/f)(1− (1/f)f) +
∑

hi(x1, . . . , xn, 1/f)gi(x1, . . . , xn)

=
∑

hi(x1, . . . , xn, 1/f)gi(x1, . . . , xn).

Since each hi is a polynomial, 1/f appears with finite degree finitely many times, so there
exists N ∈ N such that fN clears denominators. That is,

fN =
∑

fNhi(x1, . . . , xn, 1/f)gi(x1, . . . , xn),

where the right side is a linear combination of gi(x1, . . . , xn) with coefficients in k[x1, . . . , xn].
This shows that fN ∈ I as required.

The geometric content is that given an ideal J , it canonically carves out a geometric
space in kn, the vanishing set of J . This theorem states that this procedure is almost
reversible: the collection of all polynomials vanishing on this space is itself an ideal of
k[x1, . . . , xn], specifically the radical of J . Thus if I(Σ) denotes the ideal of polynomials
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vanishing on Σ ⊂ kn, and V (J) denotes the set on which all polynomials in an ideal
J C k[x1, . . . , xn] vanish, the strong Nullstellensatz states that

I(V (J)) =
√
J.

In particular, a prime ideal is its own radical, so if P is prime then I(V (P )) = P .
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