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Abstract

The asymptotic curvatures of certain space-like hypersurfaces in Minkowski space are inves-
tigated using conformal tractor calculus [BEG94]. Given a conformally compact manifold M
and a choice of scale, it is shown that the corresponding scale tractor I determines the asymp-
totic curvature. In particular, M is asymptotically hyperbolic if |I|2 tends to a positive constant
at conformal infinity. Understanding the asymptotic curvatures of hypersurfaces then becomes
the question of understanding how hypersurface scale tractors relate to ambient scale tractors.

Totally umbilic hypersurfaces in Lorentzian manifolds are initially considered. Given a choice
of scale, the intrinsic scale tractor is shown to be the projection of the ambient scale tractor. It
follows that totally umbilic space-like hypersurfaces in Minkowski space with non-zero mean
curvature are asymptotically hyperbolic.

More generally, constant mean curvature hypersurfaces in Lorentzian manifolds are also con-
sidered. Using results from [GWss] and extending them to Lorentzian signature ambient
spaces, a formula relating intrinsic hypersurface scale tractors and ambient scale tractors is ob-
tained, showing that constant non-zero mean curvature space-like hypersurfaces in Minkowski
space are asymptotically hyperbolic. Finally, the result is generalised to such hypersurfaces in
arbitrary asymptotically flat spacetimes.
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Introduction

Many studies have pointed to the existence of constant mean curvature (CMC) initial datasets,
particularly in the special case of Minkowski space [Lee18]. Studying such hypersurfaces
sheds light on the geometry of the associated spacetimes.

This dissertation interprets and provides an affirmative answer to the question “are all space-
like CMC hypersurfaces in Minkowski space asymptotically hyperbolic?”

In the preliminaries, vector bundles and pseudo-Riemannian manifolds are introduced. Con-
nections on pseudo-Riemannian manifolds are then defined, enabling differential calculus. In
the final section of the preliminaries, various notions of curvature are introduced.

In chapter two, conformal geometry is introduced. It is observed that the Levi-Civita con-
nection for a given metric in the conformal class is not conformally invariant. The precise
conformal rescaling of certain curvature tensors is determined, and conformal densities are de-
fined. These are used in chapter three to construct tractor calculus, the conformally invariant
calculus on conformal manifolds.

A compactification of Minkowski space is subsequently constructed, with a parallel and null
scale tractor, whereby the asymptotic curvatures of space-like hypersurfaces are studied. Ini-
tially totally umbilic hypersurfaces are considered. Certain objects intrinsic to the hypersurface
are found to agree with projections of the corresponding ambient objects. For example, it is
shown that the projection of the ambient tractor connection is the intrinsic tractor connection.
Following this, the more general case of CMC hypersurfaces is investigated.

A space-like CMC hypersurface in Minkowski space with non-zero mean curvature is proved
to be asymptotically hyperbolic. More generally, the result also holds for space-like CMC
non-zero mean curvature hypersurfaces in any asymptotically flat spacetime.
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Chapter 1

Preliminaries

The reader is assumed to be familiar with differential calculus on Rn and linear algebra, as
well as elementary notions from differential geometry including smooth manifolds, smooth
functions, Lie groups, and exterior derivatives. Familiarity with Einstein index notation will be
beneficial, since Penrose’s abstract index notation is used extensively in this dissertation.

1.1 Vector Bundles and Tensor Fields

Definition 1.1.1. LetF,M,E be smooth manifolds, and π : E →M a smooth map. (E, π,M,F )
is called a fibre bundle if for each p ∈ M there is a neighbourhood U ⊂ M and a diffeomor-
phism ϕ : π−1(U)→ U × F such that the following diagram commutes:

π−1(U) U × F

U

ϕ

π
pr1

ϕ is called a local trivialisation, π the projection, F the typical fibre, M the base space, and E
the total space. (E, π,M,F ) is often written as π : E →M or E.

Definition 1.1.2. Let π : E → M be a fibre bundle. A section is a smooth map σ : M → E
such that π ◦ σ = idM . The space of all sections of the fibre bundle is denoted Γ(E).

Definition 1.1.3. Let V be a finite dimensional vector space over R. A vector bundle is a fibre
bundle (E, π,M, V ) such that for each p ∈ M , there is neighbourhood U of p and a local
trivialisation ϕ : π−1(U)→ U × V such that for every x ∈ U ϕ2 : Ex → V is a vector space
isomorphism, where ϕ = (ϕ1, ϕ2). The dimension of V is the rank of the vector bundle.
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2 CHAPTER 1. PRELIMINARIES

Definition 1.1.4. A principal G-bundle, where G denotes a Lie group, is a fibre bundle π :
E → M together with a smooth right action E × G → E such that G preserves the fibres of
E, and acts freely and transitively on them.

Definition 1.1.5. Suppose π : P →M is a principal G-bundle. Let ρ : G×V → V be a finite
dimensional representation. The associated vector bundle is

π̂ : P ×ρ V →M

where P ×ρ V := P × V /∼, and ∼ is the equivalence relation (p, v) ∼ (pg, ρ(g−1, v)). π̂ is
defined by π̂ : [(p, v)] 7→ π(p).

Definition 1.1.6. Given vector bundles (V, π,M, V ) and (W, $,M,W ), a vector bundle ho-
momorphism (VB-morphism) is a smooth map ϕ : V → W , which is linear on each fibre, such
that the following diagram commutes:

V W

M

ϕ

π
$

An invertible VB-morphism whose inverse is also a VB-morphism is called a VB-isomorphism.
If a VB-isomorphism exists between two vector bundles, they are said to be isomorphic.

Definition 1.1.7. A short exact sequence of vector bundles is a diagram

Ø U V W Ø

such that the sequence is exact and each map is a VB-morphism. Ø denotes the vector bundle
with fibre {0}, i.e. the “zero bundle”. Similarly the kernel of each map is the preimage of Ø
(as Ø is a subbundle of any vector bundle). There is a subbundle V ′ of V such that U ∼= V ′
andW ∼= V

/
V ′. Although all short exact sequences of vector bundles split, situations arise in

subsequent chapters in which splitting is choice dependent (there being no canonical choice).
The semidirect sum notation is then adopted, being

V =W + U .

Definition 1.1.8 (Tangent bundle). Let M be a smooth manifold. Let p ∈ M . The tangent
space at p is the set of all derivations at p, denoted TpM . (A derivation is a linear map X ∈
hom(C∞(M),R) satisfying the product rule.) The tangent bundle, denoted TM or Ea, is the
vector bundle with fibre Ep = TpM , equipped with the natural smooth structure.
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The tangent bundle exists uniquely on every smooth manifold. Further construction details can
be found in [Lee00] (chapter 3).

The cotangent bundle of M is the dual of the tangent bundle, denoted T ∗M or Ea. The fi-
bre of Ea at each p in M is the dual vector space to TpM . Tensor bundles are constructed by
taking tensor products of vector bundles, for example,

Eabc := T ∗M ⊗ T ∗M ⊗ TM.

The indices above are “abstract”, being labels for keeping track of object type and contractions
without invoking a frame. Abstract index notation is discussed in [CG18] (chapter 0). Indices
starting in the middle of the alphabet (i, j, · · · ) are used when they correspond to a frame. Ein-
stein summation convention is then used unless stated otherwise.

Sections of the tangent bundle are called vector fields or contravariant vector fields. Sections
of the cotangent bundle are called covariant vector fields or 1 forms. Sections of tensor product
bundles are called tensor fields or simply tensors. Consistent with established notation (see for
example [CG18]), E is used to denote the trivial line bundle, so Γ(E) = C∞(M).

Definition 1.1.9. Let Tab···e be a tensor field. The symmetric part of T is denoted T(ab···e), and
the skew part of T , T[ab···e].

For example, T [ab]c
d = 1

2(T abcd−T bacd), and S(abc) = 1
6(Sabc+Sacb+ · · ·+Scba). Similarly,

the space of symmetric two-tensor fields is written Γ(E(ab)). However, Λn is used to denote the
top exterior power.

Definition 1.1.10. The Kulkarni-Nomizu product is denoted by ?, wherein

fab ? gcd = facgbd + fbdgac − fadgbc − fbcgad.

1.2 Pseudo-Riemannian Manifolds

Definition 1.2.1. LetM be a smooth manifold, and gab ∈ Γ(E(ab)). If gp : TpM → Hom(TpM,R)

defined by gp(v) 7→ (gabv
b)p is an isomorphism, g is said to be non-degenerate.

Definition 1.2.2. LetM be a smooth manifold, and gab ∈ Γ(E(ab)). If g is non-degenerate, it is
termed a pseudo-Riemannian metric tensor (or simply a metric). The manifold equipped with
g, written (M, g), is called a pseudo-Riemannian manifold.

Definition 1.2.3. Let g be a metric and x ∈ M . The signature (p, q) of g is the number of
positive and negative eigenvalues of gx, respectively.
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The signature is independent of x [O’N83]. On a manifold of dimension n, a metric of signa-
ture (n, 0) is termed Riemannian, a metric of signature (n− 1, 1) being Lorentzian.

Since metrics are non-degenerate, they can be used to raise, lower, and contract indices. Al-
though the trace of an endomorphism is independent of a metric, only the metric-trace is used
in this dissertation. Therefore the terms contraction and trace are used interchangeably.

Definition 1.2.4. Let T be a 2-tensor on an n-manifold. The trace free part of T , denoted
◦
T ,

is the tensor obtained by subtracting its trace. For example,
◦
T ab = Tab −

1

n
T ccgab = Tab −

1

n
gcdTcdgab.

1.3 Levi-Civita Connection

Definition 1.3.1. Given a vector bundle π : E →M , a connection over E is a map
∇ : Γ(TM)×Γ(E)→ Γ(E), with∇(X,Y ) written∇XY , satisfying the following properties:

• For all f, g ∈ Γ(E), A,B ∈ Γ(TM), and Y ∈ Γ(E), ∇fA+gBY = f∇AY + g∇BY .

• For all U, V ∈ Γ(E),∇X(U + V ) = ∇XU +∇XV .

• For all f ∈ Γ(E), X ∈ Γ(TM), and Y ∈ Γ(E),∇X(fY ) = f∇XY + (Xf)Y .

An affine connection is a connection on TM . If a connection is introduced without a specified
vector bundle, the connection is assumed to be affine.

Definition 1.3.2. A connection on a pseudo-Riemannian manifold is compatible with the met-
ric if for any X,Y, Z ∈ Γ(TM),

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

In abstract index notation, this is equivalent to ∇agbc = 0. Generally, any tensor T is said to
be parallel with respect to a connection if∇T vanishes.

Definition 1.3.3. The torsion T : Γ(TM)× Γ(TM)→ Γ(TM) of a connection is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ]

for all X,Y ∈ Γ(TM). The connection∇ is termed torsion free if T = 0.

Definition 1.3.4. Let {E1, · · · , En} be a local coordinate frame for TM and ∇ a connection.
The functions Γ defined by

∇iEj = ΓkijEk

are called the connection coefficients of ∇, and uniquely determine the connection. (The sum-
mation convention is not being used.)
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Theorem 1.3.5 (Fundamental theorem of Riemannian geometry). Let (M, g) be a pseudo-
Riemannian manifold. Then there exists a unique connection on Ea which is torsion free and
metric compatible. This connection is called the Levi-Civita connection.

Proof. A proof can be found in [O’N83] (chapter 3).

The proof cited above is a derivation of the Koszul formula:

Γijk =
1

2
gil (∂jgkl + ∂kglj − ∂lgjk) . (1.1)

To be the Levi-Civita connection, the connection coefficients must satisfy the Koszul formula.
Connection coefficients of the Levi-Civita connection are called Christoffel symbols.

1.4 Curvature

Definition 1.4.1. Let∇ denote the Levi-Civita connection on a pseudo-Riemannian manifold.
The Riemann curvature is defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z

for all X,Y, Z ∈ Γ(E).

A pseudo-Riemannian manifold is termed flat if its Riemann curvature vanishes. This defini-
tion can be generalised to other connections, in which case the connection is termed flat if its
associated curvature form vanishes.

Proposition 1.4.2. The Riemann curvature is a tensor field.

Proof. See [Lee97] (chapter 7).

In abstract index notation, (R(X,Y )Z)d is written XaY bRabc
dZc. This agrees with index

conventions in [Lee97], but differs from those in, for example, [GW15].

Proposition 1.4.3. The Riemann curvature satisfies the following symmetries.

• Skew symmetries: Rabcd = −Rbacd = −Rabdc.

• Interchange symmetry: Rabcd = Rcdab.

• Algebraic Bianchi identity: R(abc)d = 0.

• Differential Bianchi identity: ∇(aRbc)de = 0.

Proof. A proof can be found in [Lee97] (chapter 7).
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Definition 1.4.4. The Ricci curvature and Scalar curvature of a pseudo-Riemannian manifold
are defined by

Ricab = Rab = Rcab
c, Sc = R = Ra

a.

Because of the index convention in 1.4.1, the Ricci curvature agrees with [GW15, CG18].

Definition 1.4.5. The sectional curvature K(X,Y ) at a point p ∈M is defined by

−2g(R(X,Y )Y,X) = K(X,Y )g(X,Y ) ? g(X,Y )

for any two linearly independent X,Y ∈ TpM .

Remark. This is well defined since the Riemann curvature is a tensor field. On a 2-manifold,
this definition corresponds to Gauss’s Theorema Egregium.

A geometry with constant K = 0 is called a Euclidean geometry; K = −1, hyperbolic geom-
etry; K = 1, elliptic geometry.

Proposition 1.4.6. The Ricci curvature on a manifold is symmetric.

Proof. By the algebraic Bianchi identity, Rabcd + Rbcad + Rcabd = 0. Using skew symmetry
of the first two indices of Rabcd and contracting by gad gives

Rbc −Rcb +Rbca
a = 0.

Since the last two indices of Rabcd are also skew, Rbcaa = 0.

Proposition 1.4.7. The Ricci and Scalar curvatures on a manifold are related by the contracted
Bianchi identity:

∇aRab =
1

2
∇bR.

Proof. This is proved using the differential Bianchi identity:

∇aRbcde −∇cRbade +∇bRcade = 0.

Contracting the expression by gbe gives

∇aRcd −∇cRad −∇bRcaedgbe = 0,

by metric compatibility. Recognising that Rab is symmetric, a further contraction yields

∇aR−∇cRca −∇bRba = 0.

Rearranging this equation gives the proposition result.



Chapter 2

Conformal Manifolds and Conformal
Invariants

2.1 Conformal Metrics

Definition 2.1.1. Let M be a smooth manifold and g a pseudo-Riemannian metric on M . g̃ is
conformally related to g if there exists ω ∈ Γ(E) such that g̃ = e2ωg.

The above can be confirmed to be an equivalence relation. On any tangent space two confor-
mally related metrics give rise to the same angle between vectors, although the norms may
differ. The equivalence class of g, denoted [g], is called the conformal class of g.

Definition 2.1.2. A smooth manifold M equipped with a conformal class [g] is called a con-
formal manifold.

In pseudo-Riemannian geometry, given any metric, the Levi-Civita connection exists. Since
conformal manifolds are less rigid than pseudo-Riemannian manifolds, the question arises as
to whether a conformal manifold is equipped with a distinguished connection.

2.2 Rescaling the Levi-Civita Connection

Let (M, [g]) be a conformal manifold, and choose g, g̃ ∈ [g] such that g̃ = e2ωg for some
ω ∈ Γ(E). Let Γ̃ denote the Christoffel symbols of the Levi-Civita connection associated to g̃.
Setting Υa := ∇aω, the Kozsul formula (1.1) gives:

Γ̃abc = Γabc + Υbδ
a
c + Υcδ

a
b −Υdgbc.

7



8 CHAPTER 2. CONFORMAL MANIFOLDS AND CONFORMAL INVARIANTS

This shows that in general the Christoffel symbols of the Levi-Civita connection change when
the metric is rescaled, i.e. there is generally no well defined Levi-Civita connection on a confor-
mal manifold. For a tensor or differential operator to be well defined on a conformal manifold,
its action must be independent of the choice of metric from the conformal class.

Proposition 2.2.1. Let (M, [g]) be a conformal manifold, and choose g, g̃ ∈ [g] such that
g̃ = e2ωg for some ω ∈ Γ(E). Let V a ∈ Γ(Ea) and µa ∈ Γ(Ea). If ∇ denotes the Levi-Civita
connection associated to g, and ∇̃ the Levi-Civita connection associated to g̃, then

∇̃aV b = ∇aV b + ΥaV
b + ΥcV

cδba −ΥbVa (2.1)

∇̃aµb = ∇aµb −Υaµb −Υaµb + Υcµcgab. (2.2)

Proof. For contravariant vector fields,

∇̃aV b = V cΓ̃bac + ∂aV
b

= V c(Γabc + Υbδ
a
c + Υcδ

a
b −Υagbc) + ∂aV

b

= ∇aV b + ΥaV
b + ΥcV

cδba −ΥbVa.

The calculation for covariant vector fields is similar.

Because connections satisfy the product rule and locally any tensor field is simple, 2.2.1 de-
termines the effect of conformal rescaling on the Levi-Civita connection for general tensor
fields.

2.3 Rescaling Curvature Tensors

Definition 2.3.1. The trace free part of the Riemann curvature tensor is called the Weyl tensor.

Remark. Later in 2.3.4 it is shown that the Weyl tensor is conformally invariant.

The Weyl tensor can be determined using an ansatz. Suppose Tab ∈ Γ(Eab) is a symmetric
tensor. Consider

Sabcd = gd[aTb]c − gc[aTb]d.

By construction Sabcd satisfies the first Bianchi identity along with the skew and interchange
symmetries of the Riemann curvature tensor. Therefore, declare

Wabcd = Rabcd + λSabcd (2.3)

to determine Sabcd and Wabcd. Contraction by gad gives

Rbc +
λ

2
((n− 2)Sbc + gbcS) = 0. (2.4)
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A further contraction by gbc gives

S = − 1

λ(n− 1)
R. (2.5)

Substitution of (2.5) into (2.4) gives

Sbc = − 2

λ(n− 2)

(
Rbc −

R

2(n− 1)
gbc

)
. (2.6)

Finally, substitution of (2.6) into (2.3) gives

Wabcd = Rabcd −
1

n− 2
(−gbdRac + gbcRad + gadRbc − gacRbd)

− 1

(n− 1)(n− 2)
(gacgbdR− gadgbcR) . (2.7)

Definition 2.3.2. The Schouten tensor is defined by

Pab :=
1

n− 2

(
Rbc −

R

2(n− 1)
gbc

)
.

Proposition 2.3.3. The Riemann curvature can be written in terms of the Weyl and Schouten
tensors as

Rabcd = Wabcd − gab ? Pcd.

Proof. This is immediate from (2.7) and 2.3.2.

Theorem 2.3.4. Let (M, [g]) be a conformal manifold, and choose g, g̃ ∈ [g] such that g̃ =
e2ωg for some ω ∈ Γ(E). Define

Λab := −Υab + ΥaΥb −
1

2
Υ2gab.

The following hold:

1. R̃abcd = Rabc
d − Λab ? δdc

2. P̃ab = Pab + Λab

3. W̃abc
d = Wabc

d

Proof. See appendix A.1.

In the pseudo-Riemannian setting, a manifold is termed flat if the Riemann curvature tensor
vanishes. Although the Riemann curvature is not well defined on a conformal manifold, the
Weyl tensor is, being independent of scale choice. A manifold of dimension at least 4 is termed
conformally flat if the Weyl tensor vanishes.
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2.4 Conformal Densities

This section introduces the notion of conformal densities to aid in the construction of confor-
mally invariant operators.

Definition 2.4.1. A differential operator P is conformally covariant with biweight (u, v), if
under a conformal change of metric g̃ = e2ωg,

P̃ ◦ euω = evω ◦ P.

Definition 2.4.2. Let Tab = ∇a∇b − Pab. The almost Einstein operator, Aab : Γ(E) →
Γ(
◦
E(ab)), is defined by

Aab =
◦
T (ab).

Proposition 2.4.3. Aab is conformally covariant with biweight (1, 1).

Proof. This follows from a computation using 2.2.1 and 2.3.4.

Because conformally covariant operators are not yet well defined on conformal manifolds,
bundles of conformal densities which are specific associated bundles, are defined below.

Definition 2.4.4 (Conformal densities). Let (M, [g]) be a conformal manifold. Define Q as
the ray subbundle of E(ab) such that the fibre at p is {gp : g ∈ [g]}. Given gp in the fibre Qp,
define a principal group action % : Qp × R+ → Qp by %s(gp) = s2gp, and a representation
ρ : R+ × R → R by ρw(r) = r−w. The bundle of conformal densities of weight w is the
associated bundle with total space

E [w] = Q×ρw R.

A smooth section of E [w] can be identified with a smooth function f : Q → R such that
f(s2gp) = swf(gp). In particular, if g̃ = e2ωg, then pulling back f along g and g̃ (which are
sections of Q) results in f g̃ = eωwfg.

Given any unweighted vector bundle B, B[w] is used to denote B ⊗ E [w]. (i.e. B is weighted
with weight w.) Conformally covariant operators with biweight (u, v) correspond to well de-
fined operators on bundles with weight u to bundles with weight v.

Since each bundle [w] is trivial, and inherits an orientation from R, there is a notion of positive
densities. The subbundle of positive densities is denoted E+[w].

Definition 2.4.5 (Conformal metric). The inclusion map g : Q → E(ab) is homogeneous of
degree two. Therefore it may be identified with a section g ∈ Γ(E(ab)[2]) which is called the
conformal metric.
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Given any σ ∈ Γ(E+[1]), σ−2g is a pseudo-Riemannian metric on M . σ (or g) is termed a
choice of scale. Since E [1] is a trivial line bundle, any two sections are related by a smooth
function. Therefore, given a conformal manifold (M, [g]), every g ∈ [g] can be obtained by
σ−2g for some σ ∈ Γ(E+[1]). On the other hand, given any σ ∈ Γ(E+[1]), σ−2g necessarily
belongs to [g]. Thus (M, [g]) and (M, g) are equivalent descriptions of conformal manifolds,
the latter being used hereafter. Notation will be abused by writing g ∈ g.

With a conformal class, indices cannot be raised or lowered, since the musical isomorphisms
would disagree given two distinct choices of scale. However, an advantage of g is that rais-
ing, lowering, and contracting indices is now well defined. (This is because E [w1] ⊗ E [w2] =
E [w1 + w2].) For example, if va ∈ Γ(Ea[w1]), ωa ∈ Γ(Ea[w2]), then

gabv
a = vb ∈ Γ(Eb[w1 + 2]), gabωa = ωb ∈ Γ(Eb[w2 − 2]).

Moreover, as explained in [Cur16] (chapter 2), g determines an isomorphism

⊗n g : (Λn)2 '−→ E [2n]. (2.8)

Although tracking weights during calculations may seem an unwanted complication, calcula-
tions become self-checking, since indices and weights must be the same in every term.

Let (M, g) be a conformal manifold. Given a scale g = σ−2g, a connection on E [w] is given
by

∇gτ := σwd(σ−wτ), (2.9)

where d is the exterior derivative. A connection on weighted vector bundles is given by
coupling (2.9) with the Levi-Civita connection associated with g. Because any section of a
weighted bundle B[w] locally decomposes as V ⊗ τ , the connection is defined by

∇g(V ⊗ τ) = V ⊗∇gτ + (∇gV )⊗ τ. (2.10)

Proposition 2.4.6. (2.10) is the Levi-Civita connection on weighted vector bundles.

Proof. Choose a scale g = σ−2g, whereby

∇gg = ∇gσ2g = 2σg∇gσ + σ2∇gg = 0.

Therefore, for any choice of scale g, ∇g preserves the conformal metric. It follows that (2.10)
is just the pushforward of the Levi-Civita connection on Ea by the isomorphism (2.8).

The almost Einstein operator may now be viewed as a conformally invariant operator

Aab : Γ(E [1])→ Γ(
◦
E(ab)[1]). (2.11)
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Proposition 2.4.7. Let (M, g) be a conformal manifold and choose g, g̃ ∈ g. If g̃ = e2ωg, the
Levi-Civita connection on E [w] transforms by

∇g̃a = ∇ga + wΥa. (2.12)

Proof. Let τ ∈ E [w]. Then

∇σ̃τ = σ̃w(d(σ̃−wτ))

= e−ωwσw(d(eωwσ−wτ))

= e−ωwσw(eωwd(σ−wτ) + d(eωw)σ−wτ)

= ∇gτ + wΥτ.

In principle, we now have the means to determine how conformal rescaling transforms the
connection on any weighted tensor. All subsequent raising and lowering of tensor indices will
use the conformal metric unless otherwise stated.



Chapter 3

Conformal Tractor Calculus

3.1 Almost-Einstein Equation

In this chapter we develop conformal tractor calculus, the natural invariant calculus on confor-
mal manifolds, following [BEG94]. The following definitions and lemmas are applicable:

Definition 3.1.1. The trace of the Schouten tensor is denoted J := gabPab. Evidently J has
weight −2, and belongs to Γ(E [−2]).

Lemma 3.1.2. The Schouten tensor satisfies the following identity:

∇aP ab = ∇bJ.

Proof. This follows from the contracted Bianchi Identity, 1.4.7.

Definition 3.1.3. Suppose (M, g) is a pseudo-Riemannian manifold of dimension at least 3. g
is an Einstein metric, or simply Einstein, if Rab = λgab for some λ ∈ Γ(E).

The condition that λ is a smooth function can be replaced with λ ∈ R without loss of gen-
erality. Contracting indices gives R = nλ, so ∇cR = n∇cλ. It follows from the contracted
Bianchi identity that n∇cλ = 2∇cRcb = 2∇bλ. By the assumption n > 2, ∇cλ = 0 is the
only solution. Since manifolds are assumed to be connected, the result follows.

Let (M, g) be a conformal manifold, and g a choice of scale. Working in this scale, the
Schouten tensor can be expressed as Pab = 1

n−2 (Rab − Jgab). Rearrangement gives

Rab = (n− 2)Pab + Jgab. (3.1)

It follows that g is Einstein if and only if
◦
P ab vanishes. If there exists a scale g ∈ g such that

g is Einstein, the conformal manifold is said to be conformally Einstein. This motivates the
following definition of [Gov10]:

13
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Definition 3.1.4. Given a conformal manifold (M, g), the almost Einstein equation (AE) is

Aabσ = 0

for σ ∈ Γ(E [1]).

Lemma 3.1.5. A conformal manifold (M, g) is conformally Einstein if and only if it has a
solution σ ∈ Γ(E+[1]) to AE.

Proof. Suppose σ ∈ Γ(E+[1]) solves AE in a scale g. Recall from (2.11) that Aab is confor-
mally invariant. Therefore σ also solves AE in the scale σ−2g. In this scale, we have

0 = Aabσ =
◦
P (ab)σ =

◦
P abσ,

since∇σσ = 0. Moreover, because σ is non-vanishing,
◦
P ab vanishes, so (M, g) is conformally

Einstein. Reversing this argument proves the converse.

Proposition 3.1.6. AE is equivalent to the following system of first order differential equations

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0

∇aρ− P baµb = 0

where σ ∈ Γ(E [1]), µa ∈ Γ(Ea[1]), and ρ ∈ Γ(E [−1]).

Proof. See appendix A.2.

Since the first order system is linear, it defines a connection on E [1] ⊕ Ea[1] ⊕ E [−1]. This
will be shown to be conformally invariant, giving rise to a calculus that is effective for studying
conformal geometry.

3.2 Tractor Connection and the D Operator

Definition 3.2.1. Let (M, g) be a conformal manifold and g a choice of scale. Then [T ]g is
the pair

[T ]g := (E [1]⊕ Ea[1]⊕ E [−1], g).

Definition 3.2.2. The connection∇T on [T ]g given by

∇Ta

 σ
µb
ρ

 :=

 ∇aσ − µa
∇aµb + Pabσ + gabρ
∇aρ− P baµb

 (3.2)

is called the tractor connection.
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This is a well defined connection [CG18] (chapter 3). By construction, parallel sections of the
tractor connection are in one-to-one correspondence with solutions to AE.

Definition 3.2.3. Let (M, g) be a conformal manifold, and g a choice of scale. The D operator
is a second order differential operator Dg : E [1]→ [T ]g, defined by

Dgσ =

 nσ
n∇aσ

−∆σ − Jσ

 . (3.3)

This operator is canonically associated to the tractor connection, any parallel section (σ, µa, ρ)
of [T ]g of the form 1

nDgσ: Suppose (σ, µa, ρ) is parallel, necessarily leading to µa = ∇aσ
and gabρ = −∇aµb − Pabσ. Contracting the second expression gives nρ = −∆σ − Jσ as
required.

Definition 3.2.4. Let (M, g) be a conformal manifold, and g, g̃ ∈ g. Suppose g̃ = e2ωg. The
rescaling operator Sω is defined as

Sω :=

 1 0 0
Υa δba 0
−1

2Υ2 −Υb 1

 .

Lemma 3.2.5. The relation ∼ given by

Γ([T ]g) 3

 σ
µa
ρ

 ∼
 σ̃
µ̃a
ρ̃

 ∈ Γ([T ]g̃) if there exists ω ∈ Γ(E) such that

 σ̃
µ̃a
ρ̃

 = Sω

 σ
µa
ρ


is an equivalence relation.

Proof. If ω = 0, Sω is the identity matrix, showing reflexivity. By computation,

Sω1Sω2 = Sω1+ω2 ,

which guarantees both transitivity and symmetry.

Definition 3.2.6. Given a conformal manifold (M, g), the (standard conformal) cotractor bun-
dle is defined as

T =
∐
g∈[g]

[T ]g

/
∼

where ∼ is the equivalence relation of 3.2.5. The cotractor bundle is later shown to be canoni-
cally isomorphic to its dual, termed the tractor bundle (see (3.4)). A section of either of these
is called a tractor field (or simply tractor).
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Theorem 3.2.7. The formula (3.2) for the tractor connection determines a conformally invari-
ant connection

∇T : Γ(T )→ Γ(T ∗M ⊗ T )

which is termed the conformal tractor connection. The formula (3.3) for the differential oper-
ator Dg determines a conformally invariant differential operator

D : Γ(E [1])→ Γ(T ).

Proof. The D operator is tautologically conformally invariant by 3.2.4. See A.3 for the proof
that the tractor connection is conformally invariant.

3.3 Tractor Metric

Starting from a conformal n-manifold (M, g), a rank n+2 bundle equipped with a conformally
invariant connection has been constructed. Finally, carrying out conformal geometry on M
using this bundle requires a conformally invariant metric.

Theorem 3.3.1. Let (M, g) be a conformal manifold of signature (p, q). The map h : Γ(T )×
Γ(T )→ Γ(E) defined in a scale by

h(V, V ′) := σρ′ + σ′ρ+ gabµaµ
′
b, [V ]g = (σ, µa, ρ), [V ′]g = (σ′, µ′b, ρ

′)

is a signature (p+1, q+1) metric on T . Moreover, h is compatible with the tractor connection.
The metric is termed the tractor metric.

Proof. Choose a scale g. The formula can be written in block matrix form as

h(V, V ′) =
(
σ µa ρ

)0 0 1
0 gab 0
1 0 0

σ′µ′b
ρ′

 .

The signature is clearly (p + 1, q + 1) by consideration of the matrix form when it is diago-
nalised. To show that it is well defined, i.e., conformally invariant, let g̃ = e2ωg. Then

σ̃ρ̃′ + σ̃′ρ̃+ µ̃aµ̃′a = σ

(
ρ′ −Υaµ′a −

1

2
Υ2σ′

)
+ σ′

(
ρ−Υaµa −

1

2
Υ2σ

)
+
(
µa + Υaσ )(µ′a + Υaσ

′)
= σρ′ + σ′ρ+ µaµ′a − σΥaµ′a −

1

2
Υ2σσ′ − σ′Υaµa −

1

2
Υ2σσ′

+ σΥaµ′a + σ′Υaµa + Υ2σσ′

= σρ′ + σ′ρ+ µaµ′a.
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We now show that h compatible with the tractor connection. Calculation in a scale, (as the
tractor connection and tractor metric have been shown to be conformally invariant), gives

∇ch(V, V ′) = ∇c(σρ′ + σ′ρ+ gabµaµ
′
b)

= ((∇cσ)ρ′ + σ′∇cρ+ gab(∇cµa)µ′b) + ((∇cσ′)ρ+ σ∇cρ′ + gabµa∇cµ′b)
= ((∇cσ − µc)ρ′ + (∇cρ− Pcdµd)σ′ + (∇cµa + gacρ+ Pacσ)µa′)

+ ((∇cσ′ − µ′c)ρ+ (∇cρ′ − Pcdµ′d)σ + (∇cµ′a + gacρ
′ + Pacσ

′)µa)

= h(∇Tc V, V ′) + h(V,∇Tc V ′).

Abstract index notation EA is used hereafter to denote T . All tractor indices are denoted by
upper-case font, from the start of the Latin alphabet. Conventions from tensor calculus are
imported, for example, E(AB)[w] denotes S2T ∗ ⊗ E [w]. The tractor metric provides an iso-
morphism

EA
'−→ EA (3.4)

V 7−→ h(V, · ).

The isomorphism enables the raising and lowering of tractor indices. Since the tractor metric
lives in Γ(E(AB)),

h(V,W ) = hABVAWB = V ·W.

Hereafter the tractor bundle and its dual are distinguished solely by the positions of their in-
dices. They are referred to together as “the tractor bundle”.

3.4 Tractor Splitting Operators

From 3.2.6, the tractor bundle has the composition structure

T = (E [1]+Ea[1]) + E [−1]. (3.5)

This is equivalent to two short exact VB-sequences

Ø Ea[1] ∼= T3 T2 E [1] Ø

Ø E [−1] ∼= T1 T T2 Ø

which capture that E [−1] is isomorphic to a subbundle T1 of T , Ea[1] is isomorphic to a sub-
bundle T3 of T2

∼= T
/
T1, and E [1] is isomorphic to T2

/
T3. The splitting operators, which

provide a canonical splitting of the tractor bundle for each choice of scale, can now be defined.
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Definition 3.4.1. Let (M, g) be a conformal manifold, and g a choice of scale. A natural
isomorphism

ϕg : EA
'−→ E [1]⊕ Ea[1]⊕ E [−1]

exists. TheX,Y and Z splitting operators are defined by [XA]g := pr1◦ϕg, [Y A]g := pr3◦ϕg,
and [ZAa]g := pr2 ◦ ϕg.

Using the metric h to raise and lower indices gives

Γ(EA[−1]) ∼= Γ(EA ⊗ E [−1]) ∼= HomVB(EA, E [−1])

where HomVB(E,F ) is the space of VB-morphisms fromE to F . It follows that the Y splitting
operator can be identified with a section of EA[−1]. In summary the splitting operators are
weighted tractors:

XA ∈ Γ(EA[1]), Y A ∈ Γ(EA[−1]), ZAa ∈ Γ(EAa[1]).

Given g̃ = e2ωg, by 3.2.4,

[XA]g̃ = [XA]g

[ZAa]g̃ = [ZAa]g + Υa[X
A]g

[Y A]g̃ = [Y A]g −Υa[ZAa]g −
1

2
Υ2[XA]g.

Remark. Rather than constructingXA in the above manner, it can be defined to be the canon-
ical projection that evidently exists given the composition series 3.5. For this reason, XA is
termed the canonical tractor.

Since the splitting operators are identified with tractors, their indices may be manipulated with
the tractor metric. A splitting operator with lowered indices corresponds to an inclusion map,
for example,

YA : E [1]→ EA.

The following theorem shows how splitting operators can be useful.

Theorem 3.4.2. On a conformal manifold (M, g), there is a one-to-one correspondence be-
tween solutions σ ∈ Γ(E [1]) of AE and parallel tractors I .

Proof. Let σ be a solution to AE. Then IA = 1
nDAσ is parallel according to 3.1.6. If

IA is a parallel tractor, then XAIA is a solution to AE. In fact, ( 1
nDBX

A)IA = IB , and
(XA 1

nDA)σ = σ.

Definition 3.4.3. A tractor I is called a scale tractor if there exists non-vanishing σ ∈ Γ(E [1])
such that I = 1

nDσ.
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Theorem 3.4.2 demonstrates that a parallel tractor is necessarily a scale tractor (although the
converse is not true in general).

Given a conformal manifold, contractions between splitting operators are as follows.

XA ZAa Y A

XA 0 0 1
ZAb 0 δab 0
YA 1 0 0

This is immediate from the matrix representation of the tractor metric. Moreover, it follows
that the tractor metric can be expressed as

hAB = XAYB + ZAaZB
a + YAXB.

Finally, the action of the tractor connection on the splitting operators is determined.

Proposition 3.4.4. The following hold:

∇Tb XA = ZAb,

∇Tb ZAa = −Y Aδab −XAP ab,

∇Tb Y A = ZAaPab.

Proof. Suppose VA ∈ Γ(EA), and g is a choice of scale. Choose σ, µa, and ρ such that

VA = YAσ + ZA
aµa +XAρ.

Therefore the result follows by applying∇T to VA and equating terms.
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Chapter 4

Conformally Compact Manifolds

4.1 Conformal Compactification

Definition 4.1.1. Let (M, g) be a pseudo-Riemannian manifold. Suppose M is the interior of
a smooth compact manifold M with boundary. Let Σ denote ∂M so that M = Σ tM . Then
r is a defining function for Σ if

r : M → R is smooth, Z(r) = Σ, and dru 6= 0 for any u ∈ Σ.

(Z(r) denotes the zero locus of r.) (M, g) is conformally compact (in (M, g)) if there is a
defining function r for Σ such that

g|M = r2g,

where g is a metric on M .

Remark. It is not standard to refer to a manifold as being conformally compact “in (M, g)”,
but in this dissertation this terminology is used in the precise sense described above.

Suppose (M, g) is conformally compact, and M, g,Σ, and r are given as above. Accordingly
g induces a metric on Σ. Consider (M, g̃) where g̃ = ω2g for a non-vanishing smooth function
ω. Therefore g̃|M = (ωr)2g, and ωr is a defining function for Σ. It follows that g̃ also induces
a metric on Σ, which is conformally related to g. This shows that there is no canonical metric
on Σ, but the latter is equipped with a canonical conformal metric gΣ determined by g. (Σ, gΣ)
is termed the conformal infinity of M .

Definition 4.1.2. Let (M, g) be a conformal manifold, and Σ a submanifold of M . Then
σ ∈ Γ(E [1]) is called a defining density for Σ if

Z(σ) = Σ, and ∇gaσu 6= 0 for any u ∈ Σ and any g ∈ g.

21
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Proposition 4.1.3. Let (M, g) be a compact pseudo-Riemannian manifold and g the conformal
metric of g. A pseudo-Riemannian manifold (M, g) is conformally compact in (M, g) if and
only if there is a defining density σ ∈ Γ(E [1]) for ∂M such that g|M = σ2g.

Proof. Suppose (M, g) is conformally compact in (M, g). Let g denote the conformal metric
of g. Then there exists a non-vanishing τ ∈ Γ(E [1]) such that g = τ−2g. If r is a defining
function for ∂M , the density σ := rτ satisfies the required properties. The converse is similar.

Since conformal infinity of a manifold is canonically equipped with a conformal metric, defin-
ing densities are a convenient approach to conformal compactification.

4.2 Asymptotic Curvature

Definition 4.2.1. Suppose (M, g) is conformally compact in (M, g). Then (M, g), or g, is
called asymptotically flat if on ∂M the defining function for ∂M satisfies

|dr|2g := gabΥaΥb = 0,where Υa = ∇ar.

Asymptotically flat metrics are discussed in [GH78]. Suppose in addition that g is Riemannian.
If instead the defining function for ∂M satisfies

|dr|2g = 1

on ∂M , then (M, g), or g, is called asymptotically hyperbolic. Such metrics are discussed in
[MP11] (chapter 2).

In this dissertation g is said to be asymptotically hyperbolic if |dr|2g = c > 0 on ∂M , since g
can then be rescaled by a constant to ensure |dr|2g = 1.

Remark. The notation |V |2 is used hereafter to denote VA1···AnV
A1···An for any tractor V .

Theorem 4.2.2. Suppose (M, g) is conformally compact in (M, g) with defining function σ
for ∂M . Let I be the scale tractor of σ. Then |I|2 = |dr|2g for any g ∈ g and defining function
r for ∂M satisfying g = r−2g|M .

Proof. Let r be a defining function for ∂M satisfying g = r−2g|M for some g ∈ g. Then
g = r2σ−2g. In the scale g, we have

I =
1

n
Dσ =

 σ
∇gaσ

− 1
n(∆gσ + Jσ)

 .
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Since σ vanishes on the boundary,

I∂M =

 0
∇gaσ
− 1
n∆gσ

 .

By defining Υa := ∇ar and τ := σr−1, we have ∇gaσ = τΥa. Thus if h is the tractor metric
on M , then

|I|2 = gabτ2ΥaΥb = gabΥaΥb = |dr|2g. (4.1)

Theorem 4.2.3. Suppose (M, g) is conformally compact in (M, g) with defining function r for
∂M . Then

Rabcd = |dr|2ggab ? g
cd

+O(r).

That is, (M, g) is asymptotically hyperbolic or asymptotically flat if and only if g has asymp-
totically constant sectional curvature −1 or 0, respectively.

Proof. Suppose (M, g) is conformally compact in (M, g) with the defining function r for ∂M .
By 2.3.4,

Rabcd = r−2

(
Rabcd +

(
Ψab −ΨaΨb +

1

2
Ψ2gab

)
? gcd

)
,

where Ψa = 1
2r

2∇ar−2 = −r−1∇ar. The following expressions are substituted:

Ψ2 = gabΨaΨb = r−2gabΥaΥb = r−2|dr|2g.
Ψab = ∇aΨb = −r−1∇aΥb + r−2ΥaΥb

ΨaΨb = r−2ΥaΥb.

(Note that ∇ is the Levi-Civita connection associated with g.) Thus the Riemann curvature is
given by

Rabcd = r−2

(
Rabcd +

(
−r−1∇aΥb + r−2ΥaΥb − r−2ΥaΥb +

1

2
r−2|dr|2ggab

)
? gcd

)
= r−2Rabcd − r−3 (∇aΥb) ? gcd + r−4 1

2
|dr|2ggab ? gcd.

But Rabcd and (∇aΥb) ? gcd are both polynomials which are bounded by compactness of M ,
giving

Rabcd = |dr|2ggab ? g
cd

+O(r).

Therefore the sectional curvatures tend to −|dr|2g as r → 0.
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Proposition 4.2.4. Suppose (M, g) is asymptotically flat. Then its scalar curvature asymptot-
ically tends to zero.

Proof. This is immediate from 4.2.3.

4.3 A Conformal Compactification of Minkowski Space

Definition 4.3.1. Minkowski space, also denoted Mn, is the pseudo-Riemannian manifold
(Rn, η) where η is the Minkowski metric, given by diag(−1, 1, · · · , 1) in standard coordinates.
This is a flat, complete metric of signature (n− 1, 1).

Later chapters we will study asymptotic curvatures of hypersurfaces in Minkowski space by
using the compactification developed here. Since the aim is to use conformal tractor calculus,
the compactification is constructed in an ambient space of dimension n+ 2.

Consider V = Rn,2, that is, Rn+2 equipped with the signature (n, 2) inner product

H = diag(−1,−1, 1, · · · , 1). (4.2)

Let N denote the set of non-zero null vectors in V, that is,

N := {x ∈ V : H(x, x) = 0, x 6= 0}.

Define the equivalence relation ∼ on V \ {0} by x ∼ x′ if x′ = rx for some
inR+. (Here R+ denotes {r ∈ R : r > 0}.) The ray projectivisation of V is defined as

P+(V) := {[x] : x ∈ V \ {0}} ∼= Sn+1.

Let τ : V \ {0} → P+(V) denote the map x → [x]. P+(N ) denotes the image τ(N ), and
π : N → P+(N ) is defined by restricting τ . Topologically, P+(N ) is the product S1 × Sn−1.
An can be identified more explicitly with the set

T1,n−1 :=

{
(x1, x2) : x2

1 + x2
2 =

1

2

}
×
{

(y1, · · · , yn) : y2
1 + · · ·+ y2

n =
1

2

}
,

where {x1, x2, y1, · · · , yn} are standard coordinates in Rn+2.

Lemma 4.3.2. The space T1,n−1 is canonically equipped with a conformal metric g of signa-
ture (n− 1, 1) (but no canonical scale). (T1,n−1, g) is referred to as the Einstein toroid.

Proof. See appendix A.4.
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The construction of tractor calculus on the Einstein toroid parallels that of the conformal sphere
model of Riemannian conformal geometry described in [Gov10] (section 5.1). The tractor
bundle of T1,n−1 is given by

T = TV|N
/
∼

where Ux ∼ Uy if Ux is parallel to Uy in TV with respect to the canonical connection ∇V

determined by the affine structure on V, and π(x) = π(y).

The connection ∇V determines a connection ∇T on T by declaring ∇TWU := π∗
(
∇V
W ′U

′),
where W ′ and U ′ are lifts of W and U to a smooth section σ of π, which are then extended
throughout N by parallel transport along the rays of N .

Finally, the metric h on T is defined by h(U, V ) = H(U ′, V ′)|Im(σ). This is well defined and
compatible with∇T . The above constructions are summarised in the following proposition.

Proposition 4.3.3. The Einstein toroid is canonically equipped with a tractor bundle T , a
signature (n, 2) tractor metric h, and a connection∇T that is compatible with h. Each choice
of scale determines an isomorphism T '−→ TV|T1,n−1 , allowing the identification of tractors
with vector fields in V. A constant vector field in V corresponds to a parallel tractor.

The Einstein toroid provides a conformal compactification of Minkowski space. Consider co-
ordinates XA, for 0 ≤ A ≤ n+ 1, so that X0 = x1, · · · , Xn+1 = yn. Given any vector VA in
V, the polynomial VAXA is homogeneous of degree one, thereby corresponding to a conformal
density of weight one (see [Gov10], section 5.1). Every vector in V canonically determines a
tractor field on T1,n−1. Thus XA corresponds to the canonical tractor XA : EA → E [1].

Consider the null vector (0, 1, 0, · · · , 0, 1) in V. This canonically determines the tractor field
I on T1,n−1, given by Ip = (0, 1, 0, · · · , 0, 1) for each p ∈ N . I is null and parallel, that is,
|I|2 = 0, and ∇T I = 0. Define σ̂ := h(I,X) = IAX

A, and define Σ := Z(σ̂). T1,n−1 \ Σ
has two connected components, corresponding to the signs of σ̂, as shown below.

σ̂ > 0 σ̂ = 0

σ̂ < 0
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Let M denote the region where σ̂ is non-negative, M the region where σ̂ is positive, and
η = g|M. Since I is parallel, σ̂ corresponds to an almost-Einstein scale σ defined onM by
3.4.2. OnM, this is also positive, so η = σ−2η|M is an Einstein metric onM.

In the scale σ,

IA =
1

n
DAσ =

 σ
∇bσ

− 1
n(∆σ + Jσ)

 =

 σ
0

− 1
nJσ

 .

It follows that I2 = h(I, I) = − 2

n
Jσ2 = − 1

n(n− 1)
Rσ2. However, σ is non-zero on M

while I2 = 0 onM. Accordingly R must vanish onM. Because η is Einstein, it follows that

Rab =
R

n
ηab = 0,

the condition for (M, η) being Ricci flat. In addition, η is conformally flat by construction.
The former indicates that the Schouten tensor vanishes on M, while the latter indicates that
the Weyl tensor vanishes onM. Therefore, by 2.3.3, the Riemann curvature vanishes. In addi-
tion, η has signature (n − 1, 1) and is geodesically complete. BecauseM can be shown to be
diffeomorphic to Rn, the conclusion can be drawn that (M, η) is isometric to Minkowski space.

In fact, (M, η) is Minkowski space. (See [Gov10] for the details in the Riemannian case.)
From (4.2), the ambient metric H is given by ds2 = −dx2

1 − dx2
2 + dy2

1 + · · · + dy2
n. Let

S := π−1(M) ⊂ N . There exists a section σ̃ of π|S : S → M such that σ̃(M) is the
hypersurface defined by −x2 + yn = 1. The section σ̃ provides an identification ofM with
σ̃(M), and η corresponds to the restriction of H to σ̃(M). Since −x2 + yn = 1, it follows
that dx2

2 = dy2
n. Therefore η is −dx2

1 + dy2
1 + · · ·+ dy2

n−1, which is precisely the Minkowski
metric.

Definition 4.3.4. (M,η, I) denotes the conformal compactification of Minkowski space, I
being the scale tractor that determines the defining density to recover Minkowski space, Mn,
fromM. The conformal infinity of Minkowski space, ∂M, is denoted I .

Remark. Although (M,η, I) is compact, our construction is not technically a global con-
formal compactification, since ∇aσ vanishes at (0, 1, 0, · · · , 0, 1) and (0,−1, 0, · · · , 0,−1),
which are points in Z(σ). These points correspond to time-like and space-like infinity.



Chapter 5

Conformal Hypersurfaces

5.1 Normal Tractor

Given a smooth manifold M , the term hypersurface will mean a submanifold of codimension
1 which is smoothly embedded in M .

Let (M, g) be a conformal manifold. Let Σ ⊂M be a hypersurface inM . Σ is non-degenerate
if the restriction of any g ∈ g to TΣ is non-degenerate. In this case, g determines a conformal
structure on Σ. This is well defined, since the restriction of any two metrics from the ambient
conformal class are conformally related on the hypersurface.

Hereafter, any objects intrinsic to hypersurfaces are denoted with an overline to distinguish
them from objects on the ambient space. For example, if Σ ⊂ M is a hypersurface, a connec-
tion on M will be denoted∇, whereas a connection on Σ will be denoted∇.

Definition 5.1.1. Let g ∈ g, and Σ ⊂ (M, g) be a hypersurface. The normal bundle is defined
as the quotient bundle

NΣ := TM |Σ
/
TΣ.

The conormal bundle is denotedN∗Σ. A conormal field is a nowhere vanishing smooth section
of N∗Σ.

Lemma 5.1.2. Given any choice of scale g ∈ g, TΣ⊥ is defined by∐
x∈Σ

TxΣ⊥ =
∐
x∈Σ

{ux : gx(ux, vx) = 0 for all vx ∈ TxΣ}.

Then Σ is non-degenerate if and only if NΣ is isomorphic to TΣ⊥.

27
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Proof. If Σ is non-degenerate, ϕ : TΣ⊥ → NΣ defined by Vx 7→ Vx + TxΣ is a VB-
isomorphism. Conversely, if Σ is degenerate, dimTΣ⊥ ≥ 2 6= 1 = dimNΣ.

Lemma 5.1.3. Let Σ ⊂ M be a hypersurface. Σ is non-degenerate if and only if every non-
vanishing u ∈ Γ(T ∗Σ⊥) is nowhere null.

Proof. One direction is proved, the converse being similar. Choose a scale g ∈ g (as it is clear
that the choice of g does not affect the proof). Suppose u ∈ Γ(T ∗Σ⊥) is non-vanishing and
null at x ∈ Σ. Let Vx be the g-dual to ux. Suppose with a view to contradiction that Σ is
non-degenerate. By 5.1.2, NΣ is then a line bundle. Therefore given any Wx ∈ TxΣ⊥, there
exists k ∈ R such that Wx = kVx. It follows that gx(Wx, Vx) = 0. Because Wx was arbitrary,
Vx ∈ (TxΣ⊥)⊥ = TxΣ. Therefore g is degenerate, because gx(Vx, Zx) = 0 for any Zx ∈ TxΣ,
a contradiction.

Hereafter NΣ is identified with TΣ⊥ whenever Σ is non-degenerate. The following are defi-
nitions of some conformally invariant analogues of pseudo-Riemannian concepts.

Firstly, suppose Σ is a non-degenerate hypersurface in (M, g). Choose n′a ∈ Γ(N∗Σ[1])
such that |n′a|2 = ±1. Such an n′a exists by 5.1.2 and 5.1.3. This is arbitrarily extended to a
smooth section of Γ(Ea[1]) and denote as na. This is termed the unit conormal field.

Remark. The appearance of ± or ∓ in a formula indicates that the sign depends on the sign
of |na|2. The upper part of± or∓ is used if n is space-like, the lower part if n is time-like. Σ is
space-like if the induced metric is Riemannian. If the ambient space has Lorentzian signature,
this is equivalent to the unit conormal being time-like.

Secondly, the projection operator is defined by

Πb
a := δba ∓ nanb. (5.1)

Given any point p ∈ Σ, Πb
a|TpM is the orthogonal projection from TpM to TpΣ.

Thirdly, we construct the second fundamental form. Choose a scale g ∈ g, to make sense
of ∇. The second fundamental form is the weight 1 tensor field defined along Σ by

Lab := Πc
a∇cnb. (5.2)

This is independent of how n is extended off Σ and is therefore well defined. The transforma-
tion under conformal rescaling is determined as follows:

Lemma 5.1.4. Given the conformal rescaling g → g̃ = e2ωg, the second fundamental form
transforms by L̃ab = Lab + Υcncgab.
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Proof. Let ωa ∈ Γ(Ea[w]). By 2.2.1 and 2.4.7,∇bωa transforms by

∇̃bωa = ∇bωa + (w − 1)Υbna −Υanb + Υcncgab.

Applying this transformation to (5.2) gives L̃ab = Lab + Υcncgab.

The averaged trace of the second fundamental form is a weight−1 mean curvature, denoted by
H . Therefore

Lab =
◦
Lab +Hgab, (5.3)

where evidently the trace free term is a conformal invariant, and H transforms by H̃ = H +
Υana. From this transformation rule, the following definition is obtained:

Definition 5.1.5. Let (Σ, g) be a non-degenerate hypersurface in (M, g), and let na ∈ Γ(Ea[1])
be a unit conormal field. Choose a scale g ∈ g to split EA. Then the normal tractor to Σ is
defined by

NA = (0, na,−H) ∈ Γ(EA|Σ).

Since |N |2 = ±1, the normal tractor is viewed as the tractor bundle analogue to unit conormal
fields in pseudo-Riemannian geometry. (NA is confirmed to be a tractor since it transforms as
a tractor under a conformal rescaling.)

5.2 Intrinsic Calculus on Hypersurfaces

Hereafter, (M, g) denotes an arbitrary Lorentzian conformal manifold.

Recall from pseudo-Riemannian geometry that if a hypersurface is equipped with the restric-
tion of the ambient metric, then the intrinsic Levi-Civita connection is just the restriction of the
ambient Levi-Civita connection to tangential directions. That is, given any ωb ∈ Γ(T ∗Σ), the
intrinsic Levi-Civita connection acts by

∇aωb := Πc
aΠ

d
b∇cωd. (5.4)

Proposition 5.2.1 (Gauss Equation). The action of the intrinsic Levi-Civita connection on a
hypersurface Σ decomposes into

∇aV b = ∇

⊥

a V
b ± nbLacV c

for any V b ∈ Γ(TΣ), where ∇

⊥

a is the tangential part of the ambient Levi-Civita connection,
∇

⊥

a := Πb
a∇b.

Proof. This follows from a direct calculation.
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To study the conformal geometry of hypersurfaces, the relationship between the ambient tractor
bundle and the tractor bundle intrinsic to hypersurfaces must be established.

Theorem 5.2.2. The subbundle N⊥ ⊂ EA is isomorphic to EA, under the following map:

[N⊥]g 3 SA =

 σ
µa
ρ

 7→
 σ
µa ∓Hnaσ
ρ± 1

2H
2σ

 ∈ [EA]g. (5.5)

Proof. The map must be a conformally invariant VB-isomorphism. From the explicit formula
above, it is a VB-isomorphism. Finally, to confirm that the map is conformally invariant, the
metric is rescaled to g̃ = e2ωg. Note that in the scale g,

0 = NASA = naµa − σH.

Thus naµa = σH . By rescaling the tractors on each side of the equation and using the above
identity, conformal invariance can be verified. Details are given in [Sta06] (chapter 5).

Hereafter, EA is identified with N⊥. By analogy to Πb
a, ΠB

A := δBA ∓ NAN
B is used to

orthogonally project tractors from EA|Σ to the intrinsic bundle.

Lemma 5.2.3. The intrinsic tractor projectors XA, ZA
a, and Y A are related to the ambient

tractor projectors XA, ZA
b, and YA along Σ in the following way:

XA = XA

ZA
a = Πa

bZA
b

Y A = YA ± ZAanaH ∓
1

2
XAH

2

Proof. These follow from 5.5. If (σ, µi, ρ) is an intrinsic tractor, then

Y Aσ + ZA
aµa +XAρ = YAσ + ZA

a(µa ±Hnaσ) +XA(ρ∓ 1

2
H2σ)

=
(
YA ± ZAanaH ∓

1

2
XAH

2
)
σ + ZA

aµa +XAρ.

Given any extension µa of µa to Ea, Πa
bZA

bµa = ZA
aµa.
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5.3 Existence of Defining Densities

A conormal field is a nowhere vanishing smooth section ofN∗Σ, but it is not immediately clear
that conormal fields exist. In this section, the question of existence of non-vanishing conormals
for Σ is reformulated as the problem of existence of a defining density for Σ.

Lemma 5.3.1 (Local existence of defining densities). Let Σ be a non-degenerate hypersurface
in (M, g), with unit conormal na. Let s ∈ Σ. A neighbourhood U of s inM and τ ∈ Γ(E [1]|U )
can be found, such that τ is a defining density for Σ ∩ U . Moreover, the defining density must
satisfy∇aτ = hna along Σ ∩ U for some non-vanishing smooth function h ∈ C∞(Σ ∩ U).

Proof. A proof is given in appendix A.5. In [Spi65] (chapter 5), it is interesting to note that
manifolds are defined to be certain subsets of Rn with defining functions.

In the proof of the above lemma, if τ is a defining density for Σ, then ∇aτ is normal to Σ.
Therefore, if τ satisfies |∇aτ |2 = ±1, ∇aτ is a unit conormal vector field to the hypersurface.
This raises the question as to the setting in which local defining densities extend to global
defining densities. A necessary condition is thatM \Σ is disconnected: Suppose f is a defining
function for Σ. Then f−1((0,∞)) and f−1((−∞, 0)) are disconnected. In fact, ifM and Σ are
both connected, thenM \Σ being disconnected is also sufficient (given that Σ is non degenerate
with unit conormal).

Theorem 5.3.2 (Global existence of defining densities). Let Σ be a connected non-degenerate
hypersurface in a connected conformal manifold (M, g) with unit conormal na. If M \ Σ is
disconnected, there exists a defining density τ for Σ, and∇aτ = na along Σ.

Proof. See appendix A.6.

If a global defining density τ for a hypersurface Σ exists, it can be normalised so that ∇aτ is
the unit conormal to Σ. With reference to the definition of scale tractors 3.4.3, the following
question arises:

When is DAτ |Σ equal to NA?

The Riemannian case was answered in [Gov10], and is easily adapted to the Lorentzian case:

Theorem 5.3.3. Let Σ be a non-degenerate hypersurface in M with defining density τ . Sup-
pose |T |2 = ±1 +O(τ2), where TA = 1

nDAτ . Then T |Σ is the normal tractor to Σ.

Proof. In a scale g,

TA =
1

n
DAτ

g
=

 τ
∇aτ

− 1
n(∆ + J)τ

 .
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Since τ is a defining density for Σ, it vanishes along Σ. In addition, ∇aτ is a conormal to Σ,
and from the above premise, TATA|Σ = ∇aτ∇aτ = ±1. Therefore, it is the unit conormal
field, as required. Finally it must be shown that

− 1

n
(∆ + J)τ = −H

along Σ, where H is the weighted mean curvature. From (5.3), H(n − 1) = gabLab =
∇ana ∓ nanb∇bna. In addition,∇aτ = na, hence∇ana = ∆τ. On the other hand,

|T |2 = nan
a − 2

n
τ(∆τ + Jτ) = ±1 + τ2h.

Therefore the second term in the mean curvature identity is

nanb∇bna =
1

2
nb∇b(nana) =

1

2
nb∇b(±1 + τ2h+

2

n
τ(∆τ + Jτ)).

Along Σ, this reduces to

nanb∇bna =
1

n
nb(∇bτ)(∆τ) = ± 1

n
∆τ.

Combining terms, this gives

−H = − 1

n
∆τ = − 1

n
(∆τ + Jτ)

along Σ as required.

At this point, conditions have been established for the existence of a defining density, not yet
for a defining density τ satisfying T 2 = ±1 + O(τ2). However, no additional assumptions
are necessary to construct a defining density with this property. Using the existence of bump
functions on smooth manifolds, if Σ admits a defining density, the existence of another defining
density π′ satisfying

|Dπ′|2 = ±1 +O(π′)

can be shown. Now for any k ∈ N there exists a defining density π such that

|Dπ|2 = ±1 +O(πk). (5.6)

Details can be found in [GW15] (chapter 4). Since hypersurfaces are assumed to be non-
degenerate, the existence of a defining density for the hypersurface Σ whose scale tractor re-
stricts to the normal tractor along Σ can be assumed without loss of generality. Such a defining
density is called a unit defining density. The corresponding scale tractor is called a unit defining
tractor.

Definition 5.3.4. Let Σ be a hypersurface in (M, g), and τ ∈ Γ(E [1]) a defining density for
Σ. The scale tractor TA = 1

nDAτ is called a unit defining tractor for Σ if TA restricts to the
normal tractor along Σ.



Chapter 6

Hypersurfaces in Minkowski Space

6.1 Totally Umbilic Hypersurfaces

Physicists and mathematicians wish to understand the various possible spacetimes satisfying
Einstein’s constraint equations. By compactifying spacetimes, their behaviour at infinity can
be studied. More precisely, the behaviour of hypersurfaces at conformal infinity must be under-
stood to better understand the spacetimes. This chapter shows that space-like totally umbilic
hypersurfaces in Mn, or more generally constant mean curvature hypersurfaces, are asymptot-
ically hyperbolic.

Definition 6.1.1. A hypersurface in a conformal manifold is said to be CMC if a choice of scale
is understood, and the hypersurface has constant unweighted mean curvature in this scale.

Definition 6.1.2. A hypersurface in a conformal manifold is said to be totally umbilic if the
trace free part of the second fundamental form vanishes.

Lemma 6.1.3. Let Σ be a hypersurface in (M, g) with normal tractor N . Choose a scale σ,
and let I be the corresponding scale tractor. Then IANA = σH , where H is the weighted
mean curvature of Σ.

Proof. In the scale σ,

IA =
1

n
DAσ

σ
=

 σ
∇bσ

− 1
n(∇2σ + Jσ)

 =

 σ
0

− 1
nJσ

 ,

since∇bσ vanishes in the scale σ (see (2.9)). It follows that

h(I,N) = IANA = −σH. (6.1)
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Corollary 6.1.4. Given Σ and σ as above, Σ is CMC if and only if IANA is constant.

Proof. Given a scale g = σ−2g, σ−1Lab is the usual unweighted second fundamental form. It
follows that σH is the usual unweighted mean curvature. Therefore, Σ is CMC if and only if
σH is constant. Corollary 6.1.4 now follows from 6.1.3.

Lemma 6.1.5. Let Σ be a hypersurface in (M, g) with unit normal tractor N . Σ is totally
umbilic if and only if N is parallel.

Proof. Choose a scale, and let NA = (0, na,−H). If N is parallel along Σ, Πb
a∇bNA = 0. In

particular, Πb
a(∇bnc − gcbH) = 0. By rearrangement,

◦
Lab = Πd

a∇dnb − gabH = Πd
a(∇dnb − gdbH) = 0.

A proof of the converse is given in [CG18] (chapter 6).

Lemma 6.1.6. Let Σ be a totally umbilic hypersurface in (M, g). In a scale with a parallel
scale tractor, Σ is CMC, and the weighted mean curvature is parallel.

Proof. Let σ be a choice of scale and suppose IA = 1
nDAσ is parallel. Then

−σ∇aH = −∇a(σH)
σ
= ∇aIANA = NA∇aIA + IA∇aNA = 0.

These lemmas may now be used to study the geometry of certain hypersurfaces, initially by
relating the intrinsic tractor connection to the ambient tractor connection. The intrinsic Levi-
Civita connection was explicitly given by projecting the ambient Levi-Civita connection (see
5.4). By analogy, the projected ambient tractor connection is defined by

∇̌aV B := ΠB
DΠc

a∇cV D (6.2)

for any V B ∈ Γ(EA).

Theorem 6.1.7. Let Σ be a totally umbilic hypersurface in a conformally flat manifold. The
intrinsic tractor connection∇ agrees with the projected ambient tractor connection ∇̌.

Proof. From [CG18], given an intrinsic tractor V A,

∇̌aV A = ∇aV A ∓ SaABV B

where S is the tractor contorsion tensor. The tractor contorsion is given by

Sc
A
B = XAZB

dFcd − ZAcXBFdc
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where F is the Fialkow tensor. Finally, given a choice of scale, the Fialkow tensor is given by

Fab =
1

n− 2

(
Wabcdn

cnd +
◦
Lab

2 − |
◦
L|2

2(n− 1)
gab

)
By assumption the ambient space is conformally flat. Therefore, Wabcd = 0. Moreover, as N

is parallel,
◦
L also vanishes. Thus F vanishes everywhere, so

∇̌aV A = ∇aV A

as required.

Remark. If either the assumption that the ambient space is conformally flat, or that the hy-
persurface has parallel normal tractor is dropped, generally the projected ambient tractor
connection and intrinsic tractor connection will not agree.

Theorem 6.1.8. Let Σ be a totally umbilic hypersurface in a conformally flat manifold. If σ is
a choice of scale in the ambient space with parallel scale tractor I , then ΠB

AIB is an intrinsic
scale tractor for (Σ, g|Σ), and (ΠB

AIB)X
A

= σ|Σ.

Proof. Let σ be a choice of scale in the ambient space such that IA = 1
nDAσ is parallel. By

6.1.6, NBIB = σH is constant. It follows that

∇̌a(ΠB
AIB) = Πb

a∇bIA ∓Πb
a∇b(NAN

BIB)

= Πb
a∇bIA ∓NBIBΠb

a∇bNA.

Since I and N are parallel, both terms in the last line vanish. It follows from 6.1.7 that

∇a(ΠB
AIB) = 0

where the connection and tractor are both intrinsic. By 3.4.2, ΠB
AIB is necessarily an intrinsic

scale tractor. The corresponding scale is retrieved by (ΠA
KIA)X

K . Using 5.2.3, it follows from
computation that (ΠB

AIB)X
K

= σ as required.

Theorem 6.1.9. Suppose Σ is a space-like totally umbilic hypersurface in (M,η, I) (see
4.3.4). Then Σ is a CMC hypersurface. If the unweighted mean curvature of Σ is non-zero,
then Σ = Σ ∩Mn is asymptotically hyperbolic.

Proof. In this setting, asymptotically hyperbolic means that:

1. Let η denote the restriction of the ambient Minkowski metric to Σ, and η denote the
restriction of η to Σ. If Σ intersects conformal infinity I of Mn, there is a defining
density σ for Σ ∩I such that η = σ−2η|Σ.
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2. The intrinsic scale tractor I of (Σ,η) satisfies |I|2 = c > 0 on Σ ∩I .

It will first be shown that |I|2 is strictly positive and constant on Σ ∩I . From 6.1.8, we know

IA = ΠB
AIB = IA +NAN

BIB.

Consider the scale σ = IAX
A. We denote σ|Σ by σ. By 6.1.3, NAIA = −σH , where σH is

the unweighted mean curvature of Σ. In particular, NAIA|Σ is the Minkowski mean curvature
of Σ. From 6.1.6, since I and N are parallel, σH is constant. Since |N |2 = −1, it follows that

|I|2 = I2 + 2(−σH)2 − (−σH)2 = (σH)2 > 0. (6.3)

This is used to observe the following.

• Z(σ) = Z(σ) ∩ Σ = Σ ∩I .

• For any p in Σ ∩ I , [I]σ = (0,∇aσ(p),− 1
n(∆ + J)σ(p)). It follows that |I|2 =

|∇aσ(p)|2. Therefore ∇aσ(p) 6= 0, since |I|2 is non-vanishing on Σ ∩I by (6.3).

• By restricting η and the Minkowski metric η to Σ, η = σ−2η|Σ.

These three properties ensure 1, while (6.3) ensures 2. Therefore Σ is asymptotically hyper-
bolic.

Remark. The above procedure does not prove that if σH vanishes everywhere, then Σ is
asymptotically flat, since in general∇aσ will not be non-vanishing on conformal infinity.

6.2 Hypersurfaces with Constant Mean Curvature

The restriction to totally umbilic hypersurfaces resulted in many useful properties, one of which
was constant mean curvature. The assumption of total umbilicity will now be dropped, and
simply assume that hypersurfaces are CMC. First is necessary to further develop hypersurface
tractor calculus, and determine how it relates to ambient tractor calculus.

Theorem 6.2.1. The D operator defined in 3.2.3 generalises to the conformally invariant
Thomas D operator

DA : Γ(EΦ[w])→ Γ(EA ⊗ EΦ[w − 1])

where EΦ is an arbitrary tractor bundle, defined in a scale g by

[DAV ]g :=

 (n+ 2w − 2)wV
(n+ 2w − 2)∇aV
−(∆ + wJ)V

 .
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Proof. This is discussed in depth in [ČG00].

Definition 6.2.2. Let Σ be a hypersurface in (M, g) with unit defining tractor TA = 1
nDAτ

(see 5.3.4). The tangential D operator is defined by

DT
A := DA −

TA(T ·D)

|T |2
+

XA(T ·D)2

|T |2(n− 1)(n− 2)
. (6.4)

This is defined for Riemannian manifolds in [GWss].

Proposition 6.2.3. Let Σ be a hypersurface in (M, g). Then along Σ, on densities of weight 1,

1

n
DT
A =

1

n− 1
DA ±

|
◦
L|2XA

2(n− 1)(n− 2)
. (6.5)

Proof. See appendix (A.7). This is a generalisation of lemma 4.9 of [GWss] to a Lorentzian
ambient space, but restricted to weight 1 densities.

In particular, by combining (6.4) and (6.5), it follows that if σ is a choice of scale in the ambient
space, I is the corresponding scale tractor, and I is the intrinsic scale tractor of Σ, then

ΠB
AIB ±

XA(T ·D)2σ

n(n− 1)(n− 2)

Σ
= IA ±

|
◦
L|2XAσ

2(n− 1)(n− 2)
. (6.6)

Proposition 6.2.4. Let Σ be a hypersurface in (M, g). Let σ be a choice of scale for g, and
suppose Σ is CMC in this scale. Let IA = 1

nDAσ, and IA = 1
n−1DAσ. Then

IA = ΠB
AIB ∓

|
◦
L|2XAσ

2(n− 1)(n− 2)
− JXAσ

n(n− 1)
. (6.7)

Here J denotes the trace of Schouten in the scale σ.

Proof. From (6.6), we need only show that

(T ·D)2σ
Σ
= ∓(n− 2)Jσ.

Since Σ is CMC, the result follows immediately from equation (A.10).

Lemma 6.2.5. Let Σ be a hypersurface in (M, g). Let σ be a choice of scale for g, and suppose
Σ is CMC in this scale. Let IA = 1

nDAσ, IA = 1
n−1DAσ. Then

|I|2 Σ
= |I|2 ∓ (N ·I)2 − 4

n
Sc +O(|

◦
II|2), (6.8)

where II denotes the unweighted second fundamental form, IIab = σ−1Lab.
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Proof. From (6.7), it follows that

|I|2 = |I|2 ∓ (N ·I)2 ∓ (I·X)|
◦
L|2σ

(n− 1)(n− 2)
− 2(I·X)Jσ

n(n− 1)
∓ (N ·I)2 + (N ·N)(N ·I)2.

Because I·X|Σ = σ, and Jσ2 = 2(n− 1)Sc, 6.2.5 follows.

Suppose Σ is a hypersurface in Mn. While the mean curvature of Σ is only defined on Σ,
conformal tractor calculus provides a method to extend this to conformal infinity: If Σ is a
smooth extension of Σ to conformal infinity of a conformal compactification of Mn, andN and
I are the unit normal tractor of Σ and scale tractor of the compactification of Mn respectively,
N ·I|Σ is the minus the mean curvature of Σ. Since N ·I is defined on Σ, this extends the mean
curvature of Σ beyond Σ.

Theorem 6.2.6. Let Σ be a space-like hypersurface in (M,η, I). Suppose Σ = Σ ∩Mn is
CMC, with non-zero mean curvature. Then Σ is asymptotically hyperbolic (in the sense of
6.1.9).

Proof. Let N be the unit normal tractor of Σ, σ = IAX
A, and κ ∈ R the Minkowski mean

curvature of Σ. Then N ·I|Σ = −κ 6= 0 by 6.1.4. From the above explanation, N ·I extends
the Minkowski mean curvature to conformal infinity. Since Σ is dense in Σ, and N ·I is con-
tinuous, it follows that N ·I evaluates to −κ everywhere.

By construction, |I|2 = 0. Moreover, since Minkowski space is flat, the ambient scalar curva-
ture vanishes. In the same way that N ·I extends the mean curvature to conformal infinity, the
Sc term in the formula (6.8) extends the scalar curvature to conformal infinity. This gives

|I|2 = κ2 +O(|
◦
II|2σ).

Let g ∈ η be a choice of scale in the ambient space. Since Σ is a hypersurface in (M,η, I), if

it intersects conformal infinity I of Minkowski space, |
◦
II|2 must be finite on the intersection.

There is a defining r for I such that

η := σ−2η|M = r−2g|M.

Since
◦
Lab is conformally invariant, it can be shown that |

◦
II|2 transforms by |

◦
II|2η = r2|

◦
II|2g.

This forces |
◦
II|2 in the Minkowski scale to asymptotically approach zero. Since σ vanishes on

Σ ∩I , |I|2 = κ2 > 0 on the boundary. Moreover, following the same procedure as theorem
6.1.9, if Σ∩I is nonempty, then σ = σ|Σ is a defining density for Σ∩I , which recovers the
metric on Σ. Therefore Σ is asymptotically hyperbolic.
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Remark. It is necessary to assume that Σ has non-zero mean curvature. It is well known that
zero-mean-curvature space-like hypersurfaces exist (see [CY76]). That is, CMC does not imply
non-zero mean curvature.

6.3 CMC Hypersurfaces of Asymptotically Flat Spacetimes

Definition 6.3.1. An asymptotically flat spacetime is an asymptotically flat Lorentzian mani-
fold. Note that spacetimes are often required to satisfy the shear-free condition, as in [GH78].

Theorem 6.3.2. Let (M, g) be an asymptotically flat spacetime, conformally compact in (M, g).
Let Σ be a topologically closed space-like hypersurface in (M, g). Suppose Σ = Σ ∩M is
CMC with non-zero mean curvature. Then Σ is asymptotically hyperbolic.

Proof. Let σ be the defining density for ∂M in the conformal compactification of (M, g). Let
I = 1

nDσ. By definition 4.2.1, |∇aσ|2 = 0 on ∂M , and σ = 0 on ∂M . Calculating in the
scale σ, it follows that on ∂M ,

|I|2 = − 2

n
σ(∆ + J)σ + |∇aσ|2

∂M
= 0.

Let κ ∈ R denote the constant non-zero mean curvature of Σ. As in 6.2.6, N ·I = −κ every-
where on Σ, whereN is the unit normal tractor to Σ. By 4.2.4, Sc|M asymptotically approaches
zero since the ambient space is asymptotically flat. Thus Sc = 0 on ∂M . Therefore (6.8) gives

|I|2 Σ
= |I|2 + κ2 +O(|

◦
II|2).

From above, |I|2 = 0 on ∂M . By the same reasoning 6.2.6, |
◦
II|2 in the scale σ must also

asymptotically approach zero. Therefore

|I|2 = κ2 > 0

on Σ∩∂M . Following the procedure in 6.1.9 shows that Σ is conformally compact in the 6.1.9
sense. It follows that Σ is asymptotically hyperbolic.
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Appendix A

Proofs and Calculations

A.1 Proof of theorem 2.3.4

The rescaling rule for the Riemann curvature tensor is first established. Let V a ∈ Γ(Ea).
Proposition 2.2.1 gives

∇̃a∇̃bV c = ∇̃a(∇bV c + ΥbV
c −ΥcVb + ΥdV

dδcb).

Since ∇̃a is acting on a two-tensor, the product rule is used to determine its action. This gives
us 20 terms, most of which cancel when the derivatives are commuted. This leaves:

R̃(∂a, ∂b)V
c = ∇̃a∇̃bV c − ∇̃b∇̃aV c

= ∇a∇bV c −∇b∇aV c + ΥabV
c −ΥbaV

c + ΥαΥbV
dδca

−ΥdΥaV
dδcb + ΥcΥaVb −ΥcΥbVa + ΥadV

dδcb

−ΥbdV
dδca + Υb

cVa −Υa
cVb + Υ2Vaδ

c
b −Υ2Vbδ

c
a

= (Rabd
c + Υabδ

c
d −Υbaδ

c
d + ΥdΥbδ

c
a −ΥdΥaδ

c
b + ΥcΥagbd −ΥcΥbgad

+ Υadδ
c
b −Υbdδ

c
a + Υb

cgad −Υa
cgbd + Υ2gadδ

c
b −Υ2gbdδ

c
a)V

d

This gives the first result: R̃abcd = Rabc
d−Λab?δdc . (Note relabelling of indices.) Contracting

this with the metric gives the rescaling rules for the Ricci and scalar curvatures:

1. R̃ab = Rab + (n− 2)Λab +
(
n−2

2 Υ2 −∇cΥc

)
gab.

2. R̃ = e−2ω(R− (n− 1)(n− 2)Υ2 − 2(n− 1)∇cΥc).

Since the Schouten tensor is explicitly defined by the Ricci and scalar curvatures, it can be
shown that P̃ab = Pab+ Λab. Finally, using the rescaling rule for the Riemann curvature tensor
and Schouten tensor, the conformal invariance of the Weyl tensor can be shown.

43



44 APPENDIX A. PROOFS AND CALCULATIONS

A.2 Proof of proposition 3.1.6

AE is equivalent to

∇a∇bσ + Pabσ + gabρ = 0,

an equation in two variables σ ∈ Γ(E [1]) and ρ ∈ Γ(E [−1]). The ρ term absorbs all trace
terms, and the symmetrisation of indices can be dropped since∇a∇b + Pab act symmetrically
on densities. By introducing µa = ∇aσ, an equivalent system with two equations is formed:

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0.

Because this is not yet a closed system, AE is prolonged:

∇a(∇b∇cσ + Pbcσ + gbcρ) = ∇a∇b∇cσ + (∇aPbc)σ + Pbc∇aσ + gbc∇aρ = 0.

Contracting this by gab and gbc respectively gives

∇2∇cσ + (∇aPac)σ + P ac∇aσ +∇cρ = 0,

∇a∇2σ + (∇aJ)σ + J∇aσ + n∇aρ = 0.

Since∇a∇bσ = ∇b∇aσ,

∇a∇2σ −∇2∇aσ = (∇a∇b∇b −∇b∇b∇a)σ = (∇a∇b −∇b∇a)∇bσ = −Rab∇bσ.

Using the contracted Bianchi identity and the above result, taking the difference of the two
contracted prolonged equations produces

(n− 1)∇aρ+ J∇aσ − P ca∇cσ −Rab∇bσ = 0.

Recalling the definition of Pab,

−Rab∇bσ = ((2− n)Pab − Jgab)∇bσ = (2− n)P ca∇cσ − J∇aσ.

Substituting the above expression and dividing by n− 1, gives

∇aρ− P ba∇bσ = ∇aρ− P baµb = 0.
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A.3 Proof of theorem 3.2.7

Let (σ, µb, ρ) ∈ Γ([T ]g). Let ω be a smooth function, and g̃ = e2ωg. If ∇T and ∇̃T denote
the tractor connections on [T ]g and [T ]g̃ respectively, it will be shown that

∇̃Ta (σ̃, µ̃b, ρ̃) = Sω∇Ta (σ, µb, ρ).

This is proven one component at a time. For the first component,

∇̃aσ̃ − µ̃a = ∇aσ + Υaσ − (µa + Υaσ) = ∇aσ + µa

as required. For the second component, it will be shown that

∇̃aµ̃c + P̃acσ̃ + gacρ̃ = Υc(∇aσ − µa) + δbc(∇aµb + Pabσ + gabρ).

Considering the conformal transformation rules for E [w] and Ea, any τa ∈ Γ(Ea[w]) confor-
mally transforms by

∇̃aτb = ∇aτb + (w − 1)Υaτb −Υbτa + Υkτkgab.

From the previously derived the transformation rule for the Schouten tensor,

∇̃aµ̃c + P̃acσ̃ + gacρ̃ = ∇̃a(µc + Υcσ) + P̃acσ + gac

(
ρ−Υdµd −

1

2
Υ2σ

)
= (∇aµc −Υcµa + Υdµdgac) + (Υac − 2ΥaΥc + Υ2gac)σ

+ Υc(∇aσ + Υaσ) +

(
Pac + ΥaΥc −Υac −

1

2
Υ2gac

)
σ

+ gac

(
ρ−Υdµd −

1

2
Υ2σ

)
= ∇aµc −Υcµa + Υc∇aσ + Pacσ + gacρ

as required. For the third component, it will be shown that

∇̃aρ̃− P̃ caµ̃c = −1

2
Υ2(∇aσ − µa)−Υb(∇aµb + Pabσ + gabρ) +∇aρ− P baµb.
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From ρ ∈ Γ(E [−1]), ρ transforms by ∇̃aρ = ∇aρ−Υaρ. Therefore

∇̃aρ̃ = ∇̃a
(
ρ−Υbµb −

1

2
Υ2σ

)
= ∇aρ−Υaρ−Υb(∇aµb −Υbµa + Υcµcgab)

− (Υa
b − 2ΥaΥ

b + Υ2δba)µb −
1

2
(Υa

c − 2ΥaΥ
c + Υ2δca)Υcσ

− 1

2
Υc(Υac − 2ΥaΥc + Υ2gac)σ −

1

2
Υ2(∇aσ + Υaσ)

= ∇aρ−Υaρ−Υb∇aµb + ΥaΥ
bµb −Υa

bµb

−Υa
bΥbσ +

1

2
Υ2Υaσ −

1

2
Υ2∇aσ.

Moreover, the second term in ∇̃aρ̃− P̃ caµ̃c is given by

P̃ caµ̃c =

(
P ca + ΥcΥa −Υc

a −
1

2
Υ2δca

)
(µc + Υcσ)

= P caµc + P caΥcσ + ΥcΥaµc +
1

2
Υ2Υaσ −Υc

aµc −Υc
aΥcσ −

1

2
Υ2µa.

Combining the expressions gives

∇̃aρ̃− P̃ caµ̃c = ∇aρ−Υaρ−Υb∇aµb −
1

2
Υ2∇aσ +

1

2
Υ2µa − P baµb − P baΥbσ

Therefore ∇̃Ta (σ̃, µ̃b, ρ̃) = Sω∇Ta (σ, µb, ρ) as desired.

A.4 Proof of lemma 4.3.2

To induce a metric on T1,n−1 ∼= P+(N ): Let x ∈ N . Consider gx defined on Tπ(x)T1,n−1 by
gx(u, v) = H(u′, v′), where u′ and v′ are lifts of u and v to TxN . (Lifts satisfy π∗(u′) = u
and π∗(v′) = v.)

gx is well defined in the sense that it is independent of the choice of lifts. Suppose v1, v2 ∈
TxN , and π∗(v1) = π∗(v

2) = v. Therefore v1 − v2 ∈ kerπ∗, and v1 − v2 = kE(x) for some
real number k (where E is the Euler vector field, E(x) = xi∂i). Calculating the gradient of
F (x) = −x2

1 − x2
2 + y2

1 + · · · + y2
n shows that kE(x) is normal to TxN (with respect to H.)

Therefore, gx is independent of the choice of lift as required, and defines an inner product of
some signature on Tπ(x)T1,n−1.

To determine the signature of the inner product: H is invariant under rotations of the first
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two or last n components. Because N has rotational symmetry in the first two and last n
components, only the signature of gx for x = (0, x2, 0, · · · , 0, yn) needs to be determined.
In this case, Tπ(x)T1,n−1 is comprised of vectors of the form (u1, 0, u3, · · · , un+1, 0), so
gx(u, v) = k(−u1v1 + u3v3 + · · · + un+1vn+1) for some constant k. This shows that the
inner product has signature (n− 1, 1). By symmetry, this applies to each point on T1,n−1.

Let g denote the restriction of H to vector fields in TN which are lifts of vector fields on
T1,n−1. Let U, V ∈ TT1,n−1, and U ′, V ′ be lifts of U , V respectively. Then gsx(U ′sx, V

′
sx) =

s2gx(U ′x, V
′
x) at each x ∈ N and s ∈ R+. It follows that g(U ′, V ′) : N → R is a smooth func-

tion which is homogeneous of degree two, and gsx = s2gx for each positive s. N is identified
as the total space of the bundle of conformally related metrics on T1,n−1. Then g determines a
smooth section of S2T ∗T1,n−1[2] (which is also denoted by g.) Given a section σ ∈ Γ(E+[1]),
g = σ−2g defines a metric as 2.4.5. This results in a canonical conformal structure on T1,n−1,
but no distinguished metric.

A.5 Proof of lemma 5.3.1

Choose s ∈ Σ, and an open set V ′ ⊂ Σ such that s ∈ V ′ and V ′ ∼= Rn−1. Since Σ is a
hypersurface, it is smoothly embedded in M . Composing this inclusion map with the diffeo-
morphism from Rn−1 to V ′, results in a smooth map h : Rn−1 → M such that dh(p) has full
rank for each p ∈ Rn−1. Let δ ∈ Γ(E+[1]) be any choice of scale. Define k : Rn−1 × R→M
by

k(p, t) = h(p) + tδ−1n(h(p))

for all (p, t) ∈ Rn−1 × R. In the above display, n is the unit conormal to Σ. Since k is a
composition of smooth maps, it is itself smooth. Moreover dk(p, 0) is invertible, since dh has
full rank and is purely tangential, while δ−1n(h(p)) is purely normal. By the inverse function
theorem, there is an open set U ⊂ M , such that f̃ : U → Rn−1 × R is the (smooth) inverse
of k (given appropriate restrictions to the domains and codomains of k and f̃ ). Consider the
component fn : U → R of the inverse given by fn(k(p, t)) = t for each (p, t). Z(fn) =
imh|U = Σ ∩ U . Since f̃ is bijective, df̃(p) is invertible on TpM . Therefore dfn is non-
vanishing on Σ ∩ U . By 5.1.1, TpΣ ⊕ NpΣ = TpM . The derivatives of the first n − 1

components of f̃ are all tangential, so dfn(p) must belong to NpΣ. Since NpΣ has rank 1, by
defining τ = f̃ δ, the result follows.

A.6 Proof of theorem 5.3.2

Let δ ∈ Γ(E+[1]) be a choice of scale. From A.5, locally defining functions exist. Suppose
existence of a global unit conormal, the following can be found:
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• A collection of open sets {Up : p ∈ Σ} such that if p ∈ Σ, then p ∈ Up, and (M \Σ)∩Up
has two connected components;

• A collection of smooth functions {fp : M → R : p ∈ Σ}, with fp|Up a defining function
for Σ ∩ Up, and ∇afp agreeing with δ−1na on Up ∩ Σ.

Let p ∈ Σ. Then f−1
p ((0,∞)) ∩ Up is a subset of a connected component of M \ Σ. Denote

this component by U+, and (M \ Σ) \ U+ by U−. For any other q ∈ Σ, f−1
q ((0,∞)) ∩ Uq is

also a subset of U+, from the requirement that∇afp|Uq∩Σ = δ−1na|Uq∩Σ.

Since M is a smooth manifold and U = {Up : p ∈ Σ} ∪ {U+, U−} is an open cover of
M , there exists a partition of unity {ϕp : p ∈ Σ} ∪ {ϕ+, ϕ−} subordinate to U . (See [Lee00].)
Define f : M → R by

f := ϕ+ +
∑
p∈Σ

fpϕp − ϕ−.

This is well defined, since the sum has only finitely many non-zero terms at any point in M by
nature of being a partition of unity. In addition, the function is smooth.

The zero locus Z(f) is in fact Σ. If x ∈ U+, then ϕ−(x) = 0. Moreover, if x ∈ Up ∩ U+ for
some p ∈ Σ, then

∑
p∈Σ fpϕp(x) is strictly positive, or otherwise ϕ+(x) is strictly positive.

Thus U+ ∩ Z(f) = ∅. Similarly, U− ∩ Z(f) = ∅. On the other hand, if x ∈ Σ, then each
term vanishes.

Finally, ∇af = δ−1na. Since ∇aϕ+ vanishes on U−, continuity ensures that it vanishes
on Σ. Similarly,∇aϕ− vanishes on Σ. From the product rule, for any x ∈ Σ,

∇a
(∑
p∈Σ

fpϕp

)
(x) =

∑
p∈Σ

(∇afp)(x)ϕp(x) +
∑
p∈Σ

fp(x)(∇aϕp)(x)

= δ−1na
∑
p∈Σ

ϕp(x) = δ−1na.

It follows that fδ is a global defining density for Σ, with∇a(fδ) = na.

A.7 Proof of proposition 6.2.3.

In the following lemmas and proposition, TA = 1
nDAτ is a unit defining tractor for a hyper-

surface Σ of a Lorentzian conformal manifold (M, g). Choose a scale g, and define na =
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∇aτ, ρ = − 1
n(∆ + J)τ , and∇n = na∇a. By 5.3.3,

[TA]g =

 τ
na
ρ

 Σ
=

 0
na
−H

 = [NA]g.

As usual, nana = ±1. The following lemmas follow the proof outline for equation (4.7) in
[GWss].

Lemma A.7.1. Given a choice of scale, the intrinsic trace of Schouten is related to ambient
curvatures by

J = J ∓ Pbcnbnc ∓
|
◦
L|2

2(n− 2)
± (n− 1)2H2

2(n− 1)
. (A.1)

Proof. Let g ∈ g be a choice of scale. By equation (3.3.1) of [Cur12], the following Gauss
Equation holds when nana = s:

Rabcd = R

⊥

abcd − sLacLbd + sLadLbc.

Hence for nana = ±1,
Rabcd = R

⊥
abcd ∓ LacLbd ± sLadLbc. (A.2)

Contracting A.2 by gadgbc gives the Ricci relation,

R = R∓ 2Rbcn
bnc ∓ |

◦
L|2 ± (n− 1)2H2. (A.3)

Substituing the expression in 3.1 gives the result.

Lemma A.7.2. Given a choice of scale,∇nρ = Pabn
anb + |

◦
L|2
n−2 .

Proof. By 5.6, suppose without loss of generality that |T |2 = ±1 + τ3B for some B ∈
Γ(E [−3]). In addition |T |2 = nan

a + 2τρ. Therefore

1

2
∇n|T |2 = nan

aρ+ τ(∇nρ)∓Πab∇bna ∓ nρ∓ Jτ.

Using nana = ±1− 2τρ+ τ3B,

1

2
∇n|T |2 ± (n− 1)ρ− τ(∇nρ) = ∓Πab∇bna + τ(∓J − 2ρ2 + τ2Bρ). (A.4)

Apply ∇n to A.4. This gives

1

2
∇2
n|T |2 ± (n− 2)∇nρ = ∓∇n(Πab∇bna)− J ∓ 2ρ2. (A.5)
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Since nc(∇c∇a −∇a∇c)nb = Rcadbn
cnd,

∇n∇anb = ∇a∇nnb +Rcadbn
cnd − (∇anc)(∇cnb).

It follows that

∇n(Πab∇bna) = ∇n(Πab)∇bna + Πab(∇a∇nnb +Rcadbn
cnd − (∇anc)(∇cnb))

Σ
= −2H2 +

1

2
Πab∇a∇b(ncnc)−Rcdncnd − LabLab

= (n− 3)H2 −Rcdncnd − LabLab.

Substitution into A.5 shows that along Σ,

1

2
∇2
n|T |2 ± (n− 2)∇nρ = ±Rcdncnd ± |

◦
L|2 − J. (A.6)

For n ≥ 3, by 3.1, Rab = (n− 2)Pab + Jgab. Therefore along Σ,

∇nρ = Pabn
anb +

|
◦
L|2

n− 2
. (A.7)

Lemma A.7.3. Let ∆

⊥

= gab∇

⊥

a∇

⊥

b . Along Σ,

∆ = ∆

⊥

±∇2
n ± (n− 2)H∇n. (A.8)

Proof. Expanding the definition of∇

⊥

gives

∆

⊥

= (∇a ∓ na∇n)(∇a ∓ na∇n)

= ∆∓∇n(na∇a)− (∇nna)∇a ∓ (∇

⊥

a n
a)∇n ∓ na(∇a ∓ na∇n)∇n.

The result follows by substituting∇

⊥

a n
a = (n− 1)H and ∇nna = naH .

Lemma A.7.4. Let g be a choice of scale in which the mean curvature vanishes. (Locally there
exists such a scale: The proof in [Gov10], proposition 4.1. easy adapts to the case |na|2 = ±1.)
As an operator on densities of weight 1,

(T ·D)2 = (n− 2)
(
∓∆

⊥

∓ J + (n− 1)(Pabn
anb +∇2

n) +
n|
◦
L|2

n− 2
− |

◦
L|2

2(n− 2)

)
(A.9)

along Σ.
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Proof. T ·D = τ(−∆− J) + nρ+ n∇n when acting on weight one densities. Since T ·D has
weight −1, along Σ this gives

(T ·D)(T ·D)
Σ
= (n− 2)∇n(τ(−∆− J) + nρ+ n∇n)

= (n− 2)(∓∆∓ J + n∇nρ+ n∇2
n). (A.10)

Use (A.8) to replace∇ with∇

⊥

, (A.1) to replace J with J , and (A.7) to remove∇nρ.

Lemma A.7.5. Let g be a choice of scale in which the mean curvature vanishes. (Locally there
exists such a scale, see [Gov10], proposition 4.1.) Then

− 1

n
(∆ + J)± (T ·D)2

n(n− 1)(n− 2)
= − 1

n− 1
(∆

⊥

+ J)± |
◦
L|2

2(n− 1)(n− 2)
(A.11)

Proof. By (A.8), (A.9) and (A.1), in the scale g, the Schouten and∇2
n terms cancel, giving

−∆− J ± (T ·D)2

(n− 1)(n− 2)
= − n

n− 1
∆

⊥

− n

n− 1
J ∓ |

◦
L|2

2(n− 2)

± n|
◦
L|2

(n− 1)(n− 2)
∓ |

◦
L|2

2(n− 1)(n− 2)
.

This simplifies to the desired result.

Proposition A.7.6. Along Σ, (6.5) holds. That is,

1

n
DT
A =

1

n− 1
DA ±

|
◦
L|2XA

2(n− 1)(n− 2)
. (A.12)

Proof. The left hand side of (A.11) is the bottom slot of 1
nD

T
A. Because (∇a ∓ nanb∇b)σ =

∇

⊥

a σ, the middle slot of 1
nD

T
A is simply∇

⊥

a . These prove that in the scale g,

1

n
DT
A =

 1
∇

⊥

a

− 1
n−1(∆

⊥

+ J)

±
 0

0

|
◦
L|2

2(n−1)(n−2)


as an operator on densities of weight 1. Moreover, acting on densities, ∇

⊥

and ∆⊥ agree with
∇ and ∆. (This can be verified by computation. See (A.8) above, and lemma A.2 of [GWss].)
Therefore the above expression becomes

1

n
DT
A =

1

n− 1
DA ±

|
◦
L|2XA

2(n− 1)(n− 2)
,

which is evidently conformally invariant.
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